期刊文献+

Hilbert空间中的fusion-Besselian框架与拟fusion-Riesz基

Fusion-Besselian Frames and Fusion-Riesz Bases in Hilbert Spaces
下载PDF
导出
摘要 fusion框架作为Hilbert空间中g-框架的特例,与g-框架有许多类似的性质.该文在已有文献的基础上,借助算子理论知识,举反例说明去掉有限维空间的条件下结论不成立,进一步给出fusion-Besselian框架的算子刻画.结合fusion-Besselian框架的算子刻画和反例1,阐明在探讨该类框架性质时,应关注其适用条件和范围.随后讨论拟fusion-Riesz基与拟Riesz基、fusion-Besselian框架之间的关系.最后讨论fusion-Besselian框架和拟fusion-Riesz基的算子扰动,所得结论补充了算子扰动方面的研究. Fusion-frames,which are special cases of g-frames in Hilbert space,share many similar prop⁃erties with g-frames,but it does not mean that all properties are similar.On the basis of the existing research,this paper uses the operator theory to discuss the equivalent characterization of fusion-Besselian frames,and a counter example is given to show that the conclusion is not valid without the finite dimen⁃sion space.Furthermore,the operator characterization of fusion-Besselian frames is given.Combining the operator characterization of fusion-Besselian frames with the first counter example,it is shown that the conditions and scope of application should be concerned.Then we discuss the relations among near fusion-Riesz bases,near Riesz bases and fusion-Besselian frames.Finally,the operator perturbations of the fusion-Besselian frames and the near fusion-Riesz bases are discussed,supplementing the research on operator perturbations.
作者 王亚玲 杨洪军 王靖华 WANG Yaling;YANG Hongjun;WANG Jinghua(Manzhouli Russian Vocational College,Manzhouli 021400,China;Aviation University of Air Force,Changchun 130022,China)
出处 《通化师范学院学报》 2024年第6期8-16,共9页 Journal of Tonghua Normal University
基金 内蒙古自治区教育科学研究“十三五”规划课题(NZJGH2020105) 内蒙古哲学社会科学规划项目(2017NDC133)。
关键词 G-框架 fusion框架 fusion-Besselian框架 拟fusion-Riesz基 g-frame fusion frame fusion-Besselian frame near fusion-Riesz bases
  • 相关文献

参考文献7

二级参考文献103

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 271-1283.
  • 3Casazza P. G., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An introduction to frames and Riesz bases, Boston: Birkhauser, 2003.
  • 5Yang D. Y., zhou x. w., Yuan Z. Z., Frame wavelets with compact supports for L^2(Rn), Acta Mathematica Sinica, English Series, 2007, 23(2): 349-356.
  • 6Zhu Y. C., q-Besselian frames in Banach spaces, Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.
  • 7Li C. Y., Cao H. X., Xd frames and Riesz bases for a Banach space, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1361-1366.
  • 8Mallat S., A wavelet tour of signal processing (Second Edition), San Diego: Academic Press, 2000.
  • 9Feichtinger H. G., Grochenig K., Theory and practice of irregular sampling, in: J. J. Benedetto, M. Frazier (Eds.), Wavelets: Mathematics and Applications, Boca Raton: CRC Press. 1994, 305-363.
  • 10Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36:654-679.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部