期刊文献+

Abnormal Action Recognition with Lightweight Pose Estimation Network in Electric Power Training Scene

下载PDF
导出
摘要 Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第6期4979-4994,共16页 计算机、材料和连续体(英文)
基金 supportted by Natural Science Foundation of Jiangsu Province(No.BK20230696).
  • 相关文献

参考文献2

二级参考文献18

  • 1N. Liu, P. Peng, Z. Shen, et al. Optimization of traffic infor- mation processing based on data mining from GPS historical data. Proc.the 2rid hlternational Con/erence on Transl)otva- tion Engineering, 2009: 3544-3549.
  • 2A. Boukerche. S. Amarah. An efficient data extraction mecha- nism for mining association rules from wireless sensor net- works. Proc. of the IEEE btternational Colerence on Com- munications, 2007: 3936-3941.
  • 3J. Lee, R. Mateo, B. Gerardo, et al. Location-aware agent using data mining for the distributed location-based ser- vices. Proc. the International Coterence oo Computational Science and Its Applications, 2006: 867-876.
  • 4L. O. Alvares, G. Oliveira, C. Heuser, et al. A framework lbr trajectory data preprocessing for data mining. Proc. of the 21st International Conference on Sq[~ware Engineering aml Knowledge Engineering, 2009: 698-702.
  • 5V. Bogorny, C. Heuser, L. Alvarcs. A conceptual data model for trajectory data mining. Proc. o['the 6th htternational Con- rence on Geographic hormation Science, 2010:1-15.
  • 6S. Qiao, T. Li, J. Peng. Parallel sequential pattern mining of massive trajectory data. International Journal of Computa- tional hztelligence Systems, 2010, 3(3): 343-356.
  • 7D. Pokrajac, N. Reljin, N. Pejcic, et al. Detection of sus- picious activity using incremental outlier detection algo- rithms. Proc. of the Signal and Data Processing of Small Tar- gets, 2009: 901-912.
  • 8L. Liu, J. Fan, S. Qiao, et al. Efficiently mining outliers from trajectories of unrestraint movement. Proc. of the 3rd Interna- tional Cot!ference on Advanced Computer Theo and Engi- neering, 2010: 2261-2265.
  • 9C. Isaksson, M. Dunham. A comparative study of outlier de- tection algorithms. Proc. of the 6th International Conference on Machine Learning and Data Mining in Pattern Recogni- tion, 2009: 440-453.
  • 10E. M. Knorr, R. T. Ng, V. qcakov. Distance-based outliers: algorithms and applications. The VLDB Journal, 2000, 8(3/4): 237-253.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部