期刊文献+

Attention U-Net在雷达信号图像化分选中的应用研究

Research on The Application of Attention U-Net to Image Sorting of Radar Signals
下载PDF
导出
摘要 针对海战场复杂电磁环境对雷达信号分选的挑战,采用改进的U-Net网络结合注意力机制提出新的分选方法。首先,将脉冲描述字转化为图像序列以适应深度学习处理。通过优化U-Net架构,融入注意力机制,有效提升模型对关键脉冲特征的识别与提取能力,实现像素级分类。通过此方法,系统能够精准搜索并归类所有雷达脉冲。实验证明,在海战场复杂电磁环境中,该方法显著提升了雷达信号分选准确率,提供了一种应对强干扰环境下的高效解决方案。这一研究成果证实了Attention U-Net在雷达信号智能分选中的优越性和实用性。 In order to face the challenge of radar signal sorting in the complex electronic environment of naval battlefield,this paper proposes a new sorting method by using an improved U-Net network combined with attention mechanism.Firstly,pulse description words are transformed into image sequences to adapt to deep learning processing.By optimizing U-Net architecture and integrating attention mechanism,the model can effectively improve the recognition&extraction ability of key pulse features and realize pixel-level classification.In this way,the system can accurately search and classify all radar pulses.Experimental results show that the proposed method significantly improves the accuracy of radar signal sorting in the complex electromagnetic environment of naval battle field,and provides an efficient solution to deal with strong interference environment.This research result confirms the superiority and practicability of Attention U-Net in radar signal intelligent sorting.
作者 郭立民 张鹤韬 莫禹涵 于飒宁 胡懿真 GUO Limin;ZHANG Hetao;MO Yuhan;YU Saning;HU Yizhen(Harbin Engineering University,Harbin 150001,China;Beijing Institute of Remote Sensing Equipment,Beijing 100854,China)
出处 《舰船电子对抗》 2024年第3期78-83,95,共7页 Shipboard Electronic Countermeasure
关键词 雷达信号分选 U-Net网络 注意力机制 脉冲描述字 radar signal sorting U-Net network attention mechanism pulse description word
  • 相关文献

参考文献4

二级参考文献79

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部