摘要
针对马钢65 t转炉出钢后到站钢水钢包透气砖气量小或无底吹,无法保证钢水成分和温度均匀性,以及出钢后到站钢水温度低于工艺要求目标范围下限,无法满足铸机正常浇注对钢水温度要求的问题,通过向钢包顶吹氩气搅拌,实现均匀钢水成分和温度的目的,通过向钢包顶吹氧气,同时加入SiFe和SiMn合金,利用氧气与发热元素Si和Mn反应放热,实现低温钢水在线快速提升温度的目的。生产实践表明:采用硅铁合金(含硅72.5%)和硅锰合金(含硅18.64%、含锰66.6%)作为发热剂,氧气压力为1.2 MPa,流量为1200 Nm^(3)/h,吹氧时间为5 min时,平均升温速率为3.55℃/min,钢中发热元素Si和Mn的平均烧损率分别为0.014%/min和0.022%/min。钢包顶吹工艺为转炉平稳高效冶炼提供重要保障,取得了良好的使用效果。
In response to the problem of low or no bottom blowing during the gas permeability of the steel ladle at Ma Steel's 65 t converter after tapping,which cannot ensure the uniformity of the steel composition and temperature,and the temperature of the steel at the station after tapping is lower than the lower limit of the target range of the process requirements,which cannot meet the temperature requirements for normal casting of the casting machine,the goal of uniform steel composition and temperature is achieved by blowing argon gas to the top of the ladle and blowing oxygen to the top of the ladle.At the same time,SiFe and SiMn alloys are added,and oxygen reacts with the heating elements Si and Mn to release heat,achieving the goal of online rapid temperature increase of low-temperature steel.Production practice has shown that using silicon iron alloy(containing 72.5%silicon)and silicon manganese alloy(containing 18.64%silicon and 66.6%manganese)as heating agents,with an oxygen pressure of 1.2 MPa,a flow rate of 1200 Nm^(3)/h,and an oxygen blowing time of 5 minutes,the average heating rate is 3.55℃/min.The average burning loss rates of the heating elements Si and Mn in the steel are 0.014%/min and 0.022%/min,respectively.The top blowing process of the ladle provides an important guarantee for the smooth and efficient smelting of the converter,and has achieved good results in use.
作者
潘军
赵滨
刘威
沈思宝
PAN Jun;ZHAO Bin;LIU Wei;SHEN Sibao(Manufacturing Management Department of Ma'anshan Iron and Steel Co.,Ltd.,Ma’anshan 243000,Anhui,China)
出处
《四川冶金》
CAS
2024年第3期54-57,74,共5页
Sichuan Metallurgy
关键词
钢包
顶吹氩
顶吹氧
化学升温
steel ladle
top blowing argon
top blowing oxygen
chemical heating