期刊文献+

高航速下带自由面滑行艇粘性流场数值计算方法研究

Numerical simulation method of viscous flow field of planing craft with free-surface at high speed
下载PDF
导出
摘要 针对滑行艇高航速下姿态变化显著、数值计算时艇底易于出现气-水异常现象的问题,基于雷诺平均纳维-斯托克斯(RANS)方法及动网格技术,采用人工干预结合六自由度(6-DOF)运动模型解决自由面与网格的匹配问题,采用高分辨率交界面捕捉技术结合流体体积模型(HRIC-VOF)的方法计算气-液相分布,通过探索HRIC-VOF的角度因子、锐化因子、库朗数上界值、库朗数下界值、时间步长等对艇底气-液相分布及总阻力的影响规律,获得可有效计算高速下滑行艇阻力及自由面兴波的数值计算方法。通过与试验结果进行对比,在模型速度V_(m)=2~13 m/s(F_(V)=0.96~5.78)时的阻力计算误差小于4.5%。 For a high-speed planing craft,remarkable variation of the sailing state may cause abnormal distri⁃bution of air-water on the bottom for numerical calculation.In order to match the mesh layout and free-sur⁃face,a numerical wave tank based on Reynolds-averaged Navier-Stokes(RANS)method was established with dynamic mesh and manual six degrees of freedom(6-DOF)motion model.The high-resolution interface capturing with volume-of-fluid model(HRIC-VOF)scheme was applied to calculate the bottom’s water-air distribution on the ship model.The influences of angle factor,sharpening factor,Courant number’s upper bound,Courant number’s lower bound and time step on the calculation results of water-air distribution and total resistance were explored.The comparison of calculation and experimental results indicates that the cur⁃rent method is feasible for high-speed crafts’resistance forecast and for capture of free-surface.The relative error is less than 4.5%for ship model’s velocity at 2-13 m/s when F_(V)=0.96-5.78.
作者 向国 欧勇鹏 陈君杰 吴浩 XIANG Guo;OU Yong-peng;CHEN Jun-jie;WU Hao(Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of Technology,Wuhan 430033,China)
出处 《船舶力学》 EI CSCD 北大核心 2024年第7期1028-1039,共12页 Journal of Ship Mechanics
基金 国家自然科学基金资助项目(52101368) 内河航运技术湖北省重点实验室基金项目(NHHY2020005) 航空科学基金项目(20152316004)。
关键词 高速滑行艇 粘性CFD 气-水异常 HRIC-VOF方法 high-speed craft viscous CFD air-water abnormal distribution HRIC-VOF method
  • 相关文献

参考文献5

二级参考文献24

  • 1李晓文,林壮,郭志群,李平.基于Star-CCM+的滑行艇水动力性能模拟计算[J].中南大学学报(自然科学版),2013,44(S2):133-137. 被引量:24
  • 2张志荣,李百齐,赵峰.船舶粘性流动计算中湍流模式应用的比较[J].水动力学研究与进展(A辑),2004,19(5):637-642. 被引量:48
  • 3徐玉如,苏玉民,庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究,2006,1(3):1-4. 被引量:87
  • 4Chambliss D B, Boyd G M. The planing characteristics of two V-shaped prismatic surfaces having angles of deadrise of 20 and 40[R1. Ianglev Aeronautical Laboratory, NACA. Tech. Note 2876. Washington, 1953.
  • 5J Savitsky D. Hydrodynamic design of planing hulls[J]. Marine Technology, 1964, 1(1): 71-95.
  • 6Zhao R, Faltinsen O M, Haslum H. A simplified non-linear analysis of a high-speed planing craft in calm water[C]// FAST'97. ed. N. Baird. South Yarra, Victoria, and London: Baird Publications, 1997, 1: 431-438.
  • 7Azcueta R. Computation of turbulent free-surface flows around ships and floating bodies[D]. Ph. D. Thesis. Technical U- niversity Hamburg-Harburg, 2001.
  • 8Azcueta R. RANSE simulations for sailing yachts including dynamic sinkage & trim and unsteady motion in waves[R]. High Performance Yacht Design Conference, Auckland, 2002.
  • 9Azueta R. Steady and unsteady RANSE simulation for planning craft[C]//The 7th Conference on Fast Sea Transportation, FASR'03. lschia, Italy, 2003.
  • 10王兆立,牛江龙,秦再自,庞永杰[C].十四届中国海洋工程会议,2009.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部