期刊文献+

一种YOLOv5-DK的柠檬初期病虫害检测算法研究

Study on a YOLOv5-DK algorithm for lemon initial pests and diseases detection
下载PDF
导出
摘要 为解决柠檬初期病虫害特征部位小难以检测和可以利用数据集较少的问题,提出一种YOLOv5-DK检测算法。该算法是以YOLOv5为基础,采用K-Means++重新聚类柠檬初期虫害部位锚框,缓解柠檬初期虫害特征小的问题;同时提出一种新的轻量化Denseneck-2模块,该模块是利用DenseNet网络中复用的思想,让检测算法每一层输入都有前面每一层的特征信息,使得YOLOv5-DK对柠檬初期病虫害样本量的需求下降。与原始的YOLOv5检测算法相比较,新的YOLOv5-DK检测算法在检测的平均精度上面提高3.4%,漏检率下降2.1%,算法模型的参数量减轻6.3%,表明该算法在小样本和小目标的应用场景下性能更优。 In order to solve the problems that the characteristic parts of insect pests in the early stage of lemon were too small and difficult to detect along with the limited data sets,a YOLOv5-DK detection algorithm was proposed.The algorithm was based on YOLOv5,and adopted K-Means++to re-cluster the anchor frame of the initial pest location of lemon,alleviating the problem of small pest characteristics at the initial stage of lemon.Meanwhile,a new lightweight Denseneck-2 module was proposed,which applied the idea of reuse in the DenseNet network,so that the input of each layer of the detection algorithm had the characteristic information of each layer in front of it,which decreased the YOLOv5-DK demand on the initial sample volume of insect pests of lemons.The new YOLOv5-DK detection algorithm demonstrated higher competencies than the original one,including an increase of 3.4%in the average accuracy of detection,a decrease of 2.1%in the missed detection rate,and a reduction of 6.3%in the number of parameters of the algorithm model.These results showed that the algorithm performed better in the application of small samples and small targets.
作者 熊志刚 陈为真 Xiong Zhigang;Chen Weizhen(School of Electrical and Electronic Engineering,Wuhan Polytechnic University,Wuhan,430048,China)
出处 《中国农机化学报》 北大核心 2024年第7期249-254,共6页 Journal of Chinese Agricultural Mechanization
基金 湖北省教育厅科技项目(B2020061)。
关键词 柠檬 初期病虫害 轻量化 小样本 小目标 lemon initial pests and diseases lightweight small sample small target
  • 相关文献

参考文献4

二级参考文献57

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部