摘要
考虑当依赖于时间的外力项平移有界而非平移紧时,内部反馈阻尼项含有分布时滞的以矩形板为模型的吊桥方程解的长时间动力学行为.首先,应用单调极大算子理论讨论了该方程解的适定性,进一步应用压缩函数方法证明过程族是一致渐近紧的,从而得到一致吸引子的存在性.
We considered dynamics of rectangular plate modeling suspension bridges with internal distributed delay,when time-dependent external forclng is translation bounded but not translation compact.By virtue of monotone maximal operator theory,the well-posedness of suspension bridge equation was investigated.Moreover,the existence of uniform attractor for suspension bridge was obtained by using contractive function methods.
作者
王素萍
岳晓红
邵旭馗
WANG Suping;YUE Xiaohong;SHAO Xukui(School of Mathematics and Information Engineering,Institute of Applied Mathematics,Longdong University,Qingyang 745000,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2024年第4期1-9,共9页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(11961059)
甘肃省自然科学基金资助项目(22JR11RM165,23JRRM730)
陇东学院博士基金资助项目(XYBYZK2112,XYBYZK2113)。
关键词
吊桥方程
分布时滞
单调极大算子
一致吸引子
suspension bridge equation
distributed delay
monotone maximal operator
uniform attractor