期刊文献+

Electrochemical anodic oxidation assisted fabrication of memristors 被引量:1

下载PDF
导出
摘要 Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.
出处 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期250-272,共23页 极端制造(英文)
基金 supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802) Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031) Dongguan Innovative Research Team Program (2020607101007)。
  • 相关文献

参考文献6

二级参考文献41

  • 1Lee, D.; Park, J.; Park, J.; Woo, J.; Cha, E.; Lee, S.; Moon, K.; Song, J.; Koo, Y.; Hwang, H. Structurally engineered stackable and scalable 3D titanium-oxide switching devices for high-density nanoscale memory..4dv. Mater. 2015, 27, 59-64.
  • 2Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833-840.
  • 3Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nano- technol. 2008, 3, 429-433.
  • 4Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully room- temperature-fabricated nonvolatile resistive memory for ultmfast and high-density memory application. Nano Left. 2009, 9, 1636-1643.
  • 5Lee, M.-J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y.-B.; Kim, C.-J.; Seo, D. H.; Seo, S. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2Os-gTaO2-x bilayer structures. Nat. Mater. 2011, 10, 625-630.
  • 6Bae, Y. C.; Lee, A. R.; Lee, J. B.; Koo, J. H.; Kwon, K. C.; Park, J. G.; Ira, H. S.; Hong, J. P. Oxygen ion drift-induced complementary resistive switching in homo TiOJriOy/TiOx and hetero TiOffTiON/TiOx triple multilayer frameworks. Adv. Funct. Mater. 2012, 22, 709-716.
  • 7Gergel-Hackett, N.; Tedesco, J. L.; Richter, C. A. Memristors with flexible electronic applications. Proc. IEEE 2012, 100, 1971-1978.
  • 8Raeis Hosseini, N.; Lee, J.-S. Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 2015, 9, 419-426.
  • 9Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80-83.
  • 10Pershin, Y. V.; Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 2011, 60, 145-227.

共引文献16

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部