期刊文献+

Computed tomography-based radiomics combined with machine learning allows differentiation between primary intestinal lymphoma and Crohn's disease

下载PDF
导出
摘要 BACKGROUND Due to similar clinical manifestations and imaging signs,differential diagnosis of primary intestinal lymphoma(PIL)and Crohn's disease(CD)is a challenge in clinical practice.AIM To investigate the ability of radiomics combined with machine learning methods to differentiate PIL from CD.METHODS We collected contrast-enhanced computed tomography(CECT)and clinical data from 120 patients form center 1.A total of 944 features were extracted singlephase images of CECT scans.Using the last absolute shrinkage and selection operator model,the best predictive radiographic features and clinical indications were screened.Data from 54 patients were collected at center 2 as an external validation set to verify the robustness of the model.The area under the receiver operating characteristic curve,accuracy,sensitivity and specificity were used for evaluation.RESULTS A total of five machine learning models were built to distinguish PIL from CD.Based on the results from the test group,most models performed well with a large area under the curve(AUC)(>0.850)and high accuracy(>0.900).The combined clinical and radiomics model(AUC=1.000,accuracy=1.000)was the best model among all models.CONCLUSION Based on machine learning,a model combining clinical data with radiologic features was constructed that can effectively differentiate PIL from CD.
出处 《World Journal of Gastroenterology》 SCIE CAS 2024年第25期3155-3165,共11页 世界胃肠病学杂志(英文版)
基金 Supported by Key Technology Research and Development Program of Shandong Province,China,No.2021SFGC0104.
  • 相关文献

参考文献3

二级参考文献7

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部