摘要
首先,用二次B样条有限元法求解Fisher-Kolmogorov(FK)方程,证明半离散格式与全离散格式解的稳定性与收敛性;其次,用Crank-Nicolson方法离散时间变量,得到近似解的收敛阶为O((Δt)^(2)+h^(3));最后,用数值算例验证了理论分析结果及B样条有限元法的有效性.
Firstly,we uesd the quadratic B-spline finite element method to solve the Fisher-Kolmogorov(FK)equation,and proved the stability and convergence of solutions for the semi-discrete scheme and the fully discrete scheme.Secondly,the time variable was discretized by using the Crank-Nicolson method and the convergence order of the approximate solution was O((Δt)^(2)+h^(3)).Finally,the numerical example verified theoretical analysis results and the effectiveness of the B-spline finite element method.
作者
秦丹丹
王大铭
黄文竹
QIN Dandan;WANG Daming;HUANG Wenzhu(Department of Foundation,Aviation University of Air Force,Changchun 130022,China;School of Biology and Engineering,Guizhou Medical University,Guiyang 550025,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2024年第4期878-885,共8页
Journal of Jilin University:Science Edition
基金
贵州省卫健委科技基金(批准号:gzwkj2023-591)。