摘要
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.
基金
This work was supported by the National Natural Science Foundation of China(No.51477002)
the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2019-028).