期刊文献+

动态有权图上的随机游走概率计算

Random-Walk Probability Computation on Dynamic Weighted Graphs
下载PDF
导出
摘要 图上的随机游走概率计算是传统图论与现代数据挖掘领域普遍关注的问题之一.现有工作普遍关注静态图上的随机游走概率计算,却鲜少关注与实际应用场景更贴合的权重动态图.针对动态有权图上的随机游走概率计算问题,提出了一种基于硬币翻转采样的随机游走概率计算方法.相比于传统的基于权重采样的随机游走概率计算方法,所提方法可以在保证随机游走概率计算结果无偏的前提下,同时做到近似最优的随机游走概率计算复杂度和最优的采样结构更新复杂度.作为对比,现有方法或具有较大的计算时间复杂度,或依赖于复杂的索引结构而难以在动态图上即时更新.对所提方法做出了详细的理论分析,并在真实图数据集上进行模拟实验,实验结果证实了所提方法的有效性. Computing random-walk probabilities on graphs is the subject of extensive research in both graph theory and data mining research.However,existing work mainly focuses on static graphs,and cannot efficiently support dynamic weighted graphs,which are ubiquitous in real-world applications.We study the problem of computing random-walk probabilities on dynamic weighted graphs.We propose to use a sampling schema called coin flip sampling,rather than the more commonly adopted weighted sampling schema,for simulating random walks in dynamic weighted graphs.We demonstrate that simulations based on coin-flip sampling maintain the unbiasedness of the resulting random-walk probability approximations.Moreover,this approach allows us to simultaneously achieve a O(1)near-optimal query time complexity and an optimal update time overhead per edge insertion or deletion.This is a significant improvement over existing methods,which typically incur substantial sampling costs or rely on intricate auxiliary structures that are hard to maintain in a dynamic setting.We present both theoretical analysis and empirical evaluations to substantiate the superiority of our method on dynamic weighted graphs.
作者 王涵之 易璐 魏哲巍 甘骏豪 袁野 文继荣 杜小勇 Wang Hanzhi;Yi Lu;Wei Zhewei;Gan Junhao;Yuan Ye;Wen Jirong;Du Xiaoyong(School of Information,Renmin University of China,Beijing 100872;Gaoling School of Artificial Intelligence,Renmin University of China,Beijing 100872;Pazhou Laboratory(Huangpu),Guangzhou 510555;University of Melbourne,Melbourne,Australia,VIC3010;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081;Beijing Key Laboratory of Big Data Management and Analysis Methods(Gaoling School of Artificial Intelligence,Renmin University of China),Beijing 100872;Key Laboratory of Data Engineering and Knowledge Engineering(Renmin University of China),Ministry of Education,Beijing 100872)
出处 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1865-1881,共17页 Journal of Computer Research and Development
基金 国家自然科学基金项目(U2241212,61932001) 北京市自然科学基金项目(4222028) 北京高校卓越青年科学家项目(BJJWZYJH012019100020098) 华为下一代智能信息分发技术研究项目 中国人民大学2023年度拔尖创新人才培育资助计划项目 中央高校建设世界一流大学(学科)和特色发展引导专项资金 新一代智能搜索与推荐教育部工程研究中心资助 中国人民大学大型科学仪器共享平台资助。
关键词 随机游走概率计算 动态有权图 硬币翻转采样 实时更新 大规模图 random-walk probability computation dynamic weighted graphs coin-flip sampling real-time update large-scale graphs
  • 相关文献

参考文献2

二级参考文献15

  • 1Tung A K H. Large scale cohesive subgraphs discovery for social network visual analysis [J]. Proceedings of the VLDB Endowment, 2012, 6(2): 85-96.
  • 2Andorf C M, Honavar V. Sen T Z. Predicting the binding patterns of hub proteins: A study using yeast protein interaction networks [J]. PLoS One, 2013, 8(2): Article No e56833.
  • 3Krian M, Nagarajaram H A. Global versus local hubs in human protein protein interaction network [J]. Proteome Research, 2013, 12(12): 5436-5446.
  • 4Glaab E, Baudot A, Krasnogor N, et al. EnrichNet: NetworkLbased gene set enrichment analysis [J]. Bioinformatics, 2012, 28(18): i451-i457.
  • 5Huan Jun, Wang Wei, Prins J. Efficient mining of frequent suhgraphs in the presence of isomorphism[C]//Proc of the 3rd IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2003:549-552.
  • 6Kelley B P, Yuan Bingbing, Lewitter F, et al. PathBLAST: A tool for alignment of protein interaction networks [J]. Nucleic Acids Research, 2004, 32(Web Server issue): W83- W88.
  • 7Shlomi T, Segal D, Ruppin E, et al. QPath: A method for querying pathways in a proteiprotein interaction network[J]. BMC Bioinformatics, 2006(7) : Article No 199.
  • 8Dost B, Shlomi T, Gupta N, et al. QNet: A tool for querying protein interaction networks [J]. Computional Biology, 2008, 15(7): 913-925.
  • 9Yang Q, Sze S H. Path matching and graph matching in biological networks [J]. Computional Biology, 2007, 14(1) : 56-67.
  • 10Singh R, Xu Jinbo, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35) : 12763-12768.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部