摘要
In the present contribution,we demonstrate that the sluggish kinetics of oxygen evolution reaction(OER)over the bismuth sulfide(Bi_(2)S_(3))photoanode,which severely restricts its photoelectrochemical activity,is markedly accelerated by employing a sulfatecontaining electrolyte.First-principle calculation points to the spontaneous adsorption of sulfate(SO_(4)^(2−))on Bi_(2)S_(3)and its capacity of stabilizing the OER intermediates through hydrogen bonding,which is further reinforced by increasing the local density of states near the Fermi level of Bi_(2)S_(3).Meanwhile,the electron transfer is also promoted to synergistically render the ratedetermining step(from O*to OOH*)of OER over Bi_(2)S_(3)kinetically facile.Last but not least,benefitting from such enhanced OER activity and efficient charge separation resulted from depositing Bi_(2)S_(3)on the zinc oxide nanorods(ZnO NRs),forming a core–shell heterojunction,its photocurrent density achieves 8.61 mA·cm^(−2)at 1.23 VRHE,far surpassing those reported for additional Bi_(2)S_(3)-based and several state-of-the-art photoanodes in the literature and further exceeding their theoretical limit.The great promise of the Bi_(2)S_(3)/ZnO NRs is in view of such outperformance,the superior Faradaic yield of oxygen of more than~80%and the outstanding half-cell applied bias photon-to-current efficiency of~1%well corroborated.
基金
supported by the National Natural Science Foundation of China and Shanghai Jiao Tong University(Nos.22109096,WF220528005 and ZXDF280001/024).