期刊文献+

Comparative Analysis of Diagonal and Centrifugal Compressors with Synergy Theory in Compressed Air Energy Storage System

原文传递
导出
摘要 Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1325-1339,共15页 热科学学报(英文版)
基金 supported by the Major Science and Technology Projects of Inner Mongolia(Grant No.2021ZD0030) the National Natural Science Foundation of China(Grant No.52106278) the National Science Fund for Distinguished Young Scholars(Grant No.51925604) the Science and Technology Foundation of Guizhou Province(No.[2019]1422)。
  • 相关文献

参考文献3

二级参考文献89

  • 1Knowlen C,Matick AT,Bruckner AP.High efficiency energy conversion systems for liquid nitrogen automobiles.SAE paper 1998;No 981898.
  • 2ECOSTAR:European concentrated solar thermal road-mapping,Deliverable No.7,Roadmap Document,Nov.2004,Available online:http://www.vgb.org/data.o/vgborg_/Forschung/road-map252.pdf[2007-03-20]. Receiveddate:04/15/2008 Modifieddate:07/02/2008 Published:03/10/2009
  • 3Mclarnon FR,Cairns EJ.Energy storage.Ann Rev Energy 1989;14:241-71.
  • 4Baker JN,Collinson A.Electrical energy storage at the turn of the millennium.Power Eng J 1999;6:107-12.
  • 5Dti Report.Status of electrical energy storage systems.DG/DTI/00050/00/00,URN NUMBER 04/1878,UK Department of Trade and Industry;2004,p.1-24.
  • 6Australian Greenhouse Office.Advanced electricity storage technol-ogies programme.ISBN:1 921120 37 1,Australian Greenhouse Office;2005,p.1-35.
  • 7Walawalkar R,Apt J,Mancini R.Economics of electric energy storage for energy arbitrage and regulation.Energy Policy 2007;5:2558-68.
  • 8Dti Report.Review of electrical energy storage technologies and systems and of their potential for the UK.DG/DTI/00055/00/00,URN NUMBER 04/1876,UK Department of Trade and Industry;2004,p.1-34.
  • 9Dobie WC.Electrical energy storage.Power Eng J 1998;12:177-81.
  • 10Koot M,Kessels J,Jager B,et al.Energy management strategies for vehicular electric power systems.IEEE T Veh Technol 2005;54:771-82.

共引文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部