期刊文献+

基于拥堵感知的自动化集装箱码头AGV充电策略

Congestion-aware AGV charging strategy in automated container terminal
下载PDF
导出
摘要 为解决集装箱码头自动导引小车(AGV)作业过程中的拥堵、充电问题,以最小化AGV的完工时间为目标建立混合整数规划模型,提出分流拥堵路网分区中AGV的充电策略,并设计两阶段算法进行求解。第一阶段利用模拟退火算法优化AGV任务调度,第二阶段对于最优的AGV调度,进一步利用基于Dijkstra的拥堵预测算法应用拥堵感知充电策略优化AGV充电任务调度。实验表明拥堵感知充电策略比排队等待充电策略和按需充电策略分别平均节约了5.94%和2.73%的作业时间、方差分别为4.08和3.09。拥堵感知充电策略提高了AGV的作业效率,且其有效性与路段利用率、最大拥堵系数密切相关。 To solve the congestion and charging problems in the operation process of Automated Guided Vehicle(AGV)at container terminals,a mixed integer programming model was established to minimize the completion time of AGV,the charging strategy of AGV in split congestion road network was proposed,and a two-stage algorithm was designed to solve the problem.In the first stage,simulated annealing algorithm was used to optimize the AGV task scheduling.In the second stage,for the optimal AGV scheduling,the Dijkstra-based congestion prediction algorithm with congestion-aware charging strategy was further used to optimize the AGV charging task scheduling.Experimental results showed that compared with queueing charging strategy and on-demand charging strategy,congestion-aware charging strategy could save 5.94%and 2.73%of operation time,and variance were 4.08 and 3.09 respectively.The congestion-aware charging strategy improved the operational efficiency of AGV,and its effectiveness was closely related to the road utilization rate and the maximum congestion coefficient.
作者 马宁丽 胡志华 MA Ningli;HU Zhihua(Logistics Research Center,Shanghai Maritime University,Shanghai 201306,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2621-2630,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(71871136)。
关键词 自动化码头 自动导引车调度 充电策略 拥堵预测 模拟退火算法 automated terminal automated guided vehicle scheduling charging strategy congestion prediction simulated degradation algorithm
  • 相关文献

参考文献7

二级参考文献40

  • 1陈方维,赵雪华,周家足.类拟的Euler公式(英文)[J].数学杂志,2005,25(4):355-357. 被引量:3
  • 2Cunningham I,Burnham K.Online use of the fuzzy transform in the estimation of electric vehicle range[J].Measurement and Control,2013,46(9):277-282.
  • 3Neaimeh M,Hill G A,Hübner Y,et al.Routing systems to extend the driving range of electric vehicles[J].IET Intelligent Transport Systems,2013,7(3):327-336.
  • 4Gholizadeh M,Salmasi F R.Estimation of state-ofcharge, unknown nonlinearities,and state- of- health of a lithium-ion battery based on a comprehensive unobservable model[J].Industrial Electronics,IEEE Transactions on,2014,61(3):1335-1344.
  • 5Dong-Qing Wang,Feng Ding,et al.Data filtering based least squares algorithms for multivariable CARAR-like systems[J].International Journal of Control,Automation and Systems,2013,11:711-717.
  • 6Chen Ting,Braga-Neto.Maximum-likelihood estimation of the discrete coicient of determination in stochastic boolean systems[J].IEEE Transactions on Signal Processing,2013,61:3880-3894.
  • 7Garrida J,Vazquez F,et al.Centralized multivariable control by simplified decoupling[J].Journal of Process Control,2012,22:1044-1062.54.
  • 8林秀丽,汤大钢,丁焰,尹航,吉喆.中国机动车行驶里程分布规律[J].环境科学研究,2009,22(3):377-380. 被引量:48
  • 9李惠光,贾建成,冷春辉.基于分步控制算法的多AGV路径规划[J].控制工程,2010,17(S2):93-96. 被引量:8
  • 10钟建琳,Andrzej Maslowski.制造环境中AGV运输子系统的路径规划[J].机械设计与制造,2010(2):237-239. 被引量:7

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部