摘要
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。
For improving the semantic segmentation effect of remote sensing images,this paper proposes a Transformer based multi-scale Transformer network(MSTNet)based on the characteristics of small inter-class variance and large intra-class variance of segmentation targets,focusing on two key points:global contextual information and multi-scale semantic features.The MSTNet consists of an encoder and a decoder.The encoder includes an improved visual attention network(VAN)backbone based on Transformer and an improved multi-scale semantic feature extraction module(MSFEM)based on atrous spatial pyramid pooling(ASPP)to extract multi-scale semantic features.The decoder is designed with a lightweight multi-layer perception(MLP)and an encoder,to fully analyze the global contextual information and multi-scale representations features extracted by utilizing the inductive property of transformer.The proposed MSTNet was validated on two high-resolution remote sensing semantic segmentation datasets,ISPRS Potsdam and LoveDA,achieving an average intersection over union(mIoU)of 79.50%and 54.12%,and an average F1-score(mF1)of 87.46%and 69.34%,respectively.The experimental results verify that the proposed method has effectively improved the semantic segmentation of remote sensing images.
作者
邵凯
王明政
王光宇
SHAO Kai;WANG Mingzheng;WANG Guangyu(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Engineering Research Center of Mobile Communications of the Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《智能系统学报》
CSCD
北大核心
2024年第4期920-929,共10页
CAAI Transactions on Intelligent Systems