摘要
由于变流器出口线路阻抗的不匹配,采用传统下垂控制策略的多并联构网型变流器难以实现无功功率的精确分配。为了提高无功功率分配精度,文中分析了并联变流器的功率分配机理,提出了一种将变流器的无功功率分配误差和输出电压相结合的自适应虚拟阻抗设计方法。基于该方法的无功功率分配策略在实际线路阻抗未知且分布式单元之间无互联通信的工况下,可实现无功功率高精度分配。该策略还可以改善引入虚拟阻抗存在的无功功率分配精度与输出电压跌落之间的矛盾,抑制变流器间的环流。此外,对变流器进行小信号稳定性分析以合理设计控制参数。硬件在环仿真的结果验证了所提控制策略的有效性。
Due to the mismatch of the line impedance of each converter,it is difficult to realize the accurate reactive power sharing for multiple parallel grid-forming converters under the traditional droop control strategy.In order to improve the reactive power sharing accuracy,this paper analyzes the power sharing mechanism of the parallel converters and proposes an adaptive virtual impedance design method that combines the reactive power sharing error and the output voltage of the converter.Under the operation condition where the actual line impedance is unknown and there is no interconnection communication between distributed units,the reactive power sharing strategy based on the proposed method can achieve high reactive power sharing accuracy.It also improves the contradiction between the reactive power sharing accuracy and the output voltage drop that exists when the virtual impedance is introduced.And the circulating current between converters is suppressed.In addition,the small-signal stability analysis of the converter is performed to rationally design the control parameters.The hardware-in-loop simulation results verify the effectiveness of the proposed control strategy.
作者
刘沁怡
黄伟煌
郭铸
朱虹熹
刘飞
LIU Qinyi;HUANG Weihuang;GUO Zhu;ZHU Hongxi;LIU Fei(Hubei Key Laboratory of Power Equipment&System Security for Integrated Energy(School of Electrical Engineering and Automation,Wuhan University),Wuhan 430072,China;State Key Laboratory of HVDC(Electric Power Research Institute of China Southern Power Grid Company Limited),Guangzhou 510663,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2024年第15期122-130,共9页
Automation of Electric Power Systems
基金
中国南方电网有限责任公司联合研究院科技项目(光伏集群柔直送出系统构网型控制技术研究,CGYKJXM20220325)。
关键词
微电网
并联变流器
构网型控制
功率分配
环流抑制
虚拟阻抗
microgrid
parallel converter
grid-forming control
power sharing
circulating current suppression
virtual impedance