期刊文献+

Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems

下载PDF
导出
摘要 Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页 自动化学报(英文版)
基金 support by the Open Project of Xiangjiang Laboratory(22XJ02003) the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07) the National Science Fund for Outstanding Young Scholars(62122093) the National Natural Science Foundation of China(72071205) the Hunan Graduate Research Innovation Project(CX20230074) the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490) the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03) the Science and Technology Innovation Program of Humnan Province(2023RC1002).
  • 相关文献

参考文献2

二级参考文献233

  • 1Blum C, Chiong R, Clerc M, De Jong K A, Michalewicz Z, Neri F, Weise T. Evolutionary optimization. In Variants of Evolutionary Algorithms for Real- World Applications, Chiong R, Weise T, Michalewicz Z (eds.), Berlin/Heidelberg: Springer-Verlag, 2011, pp.1-29.
  • 2Weise T. Global Optimization Algorithms - Theory and Application. Germany: it-weise, de (self-published), 2009. http://www.it-weise.de/projects/book.pdf.
  • 3Eiben A E, Smith J E. Introduction to Evolutionary Computing (Natural Computing Series). New York, USA: Springer New York, 2003.
  • 4Chiong R, Weise T, Michalewicz Z (eds.). Variants of Evolutionary Algorithms for Real-World Applications. Berlin/Heidelberg: Springer-Verlag, 2011.
  • 5Whitley L D. A genetic algorithm tutorial. Statistics and Computing, 1994, 4(2): 65-85.
  • 6Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Germany: Springer-Verlag GmbH, 1996.
  • 7Coello Coello C A. A short tutorial on evolutionary multiobjective optimization. In Proc. the 1st International Conference on Evolutionary Multi-Criterion Optimization (EM02001), Zurich, Switzerland, March 7-9, 2001, pp.21-40.
  • 8Coello Coello C A. Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287.
  • 9Trojanowski K, Michalewicz Z. Evolutionary algorithms and the problem-specific knowledge. In Proc. the 2nd National Conference on Evolutionary Computation and Global Optimization, Rytro, Poland, September 16-19, 1997, pp.281-292.
  • 10Chiong R, Dhakal S (eds.). Natural Intelligence for Scheduling, Planning and Packing Problems. Berlin/Heidelberg: Springer-Verlag, 2009.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部