期刊文献+

基于CMS-SSA-BP模型的混凝土碳化深度预测性能对比

Comparative on Prediction Performance of Concrete Carbonation Depth Based on CMS-SSA-BP Model
下载PDF
导出
摘要 为了提高SSA-BP模型的预测准确性,分别使用三类混沌映射序列(CMS)初始化麻雀位置,帮助SSA-BP模型跳出局部极值,从而提高解的质量。利用200组实际混凝土碳化深度试验数据作为运行数据,以黏接剂剂量、粉煤灰置换水平、水胶比、CO_(2)体积分数、相对湿度、暴露时间作为输入变量,混凝土碳化深度作为输出变量,分别运行2次后得出各项指标数值,对比分析三类CMS-SSA-BP模型各自的优化点。结果表明,经过混沌映射序列(CMS)优化的SSA-BP模型预测性能更佳,其中,Tent-SSA-BP模型的预测精度最佳,Logistic-SSA-BP模型的预测稳定性最佳,Sine-SSA-BP模型的收敛速度最快。 In order to improve the prediction accuracy of the SSA-BP model,three types of chaotic mapping sequences(CMS)were used to initialize the sparrow position respectively,which helped the SSA-BP model to jump out of the local extremes,thus improving the quality of the solution.Using 200 sets of actual concrete carbonation depth test data as running data,with adhesive dosage,fly ash replacement level,water-cement ratio,CO_(2) volume fraction,relative humidity,exposure time as input variables,and concrete carbonation depth as output variables,the values of each index were obtained after two runs,and the optimization points of each of the three types of CMS-SSA-BP models were compared and analyzed.The results showed that the SSA-BP models optimized with chaotic mapping sequences(CMS)had better prediction performance.Among them,Tent-SSA-BP model had the best prediction accuracy,Logistic-SSA-BP model had the best prediction stability,and Sine-SSA-BP model had the fastest convergence speed.
作者 陈双赢 张海君 张彦飞 CHEN Shuangying;ZHANG Haijun;ZHANG Yanfei(School of Highway,Chang'an University,Xi'an,710064,China;Fourth Highway Design Institute,Shanxi Province Transportation Planning,Survey and Design Research Institute Limited,Taiyuan,030000,China;Engineering Management Department,Shanxi Highway Bureau,Taiyuan,030000,China)
出处 《沈阳大学学报(自然科学版)》 CAS 2024年第4期350-357,共8页 Journal of Shenyang University:Natural Science
基金 山西省交通运输厅科技项目(2021-1-2)。
关键词 预测性能对比 BP模型 SSA-BP模型 混沌映射序列(CMS) 混凝土碳化深度 comparative of predictive performance BP model SSA-BP model chaotic mapping sequences(CMS) depth of concrete carbonation
  • 相关文献

参考文献9

二级参考文献79

  • 1陈益民,郭随华,管宗甫.高胶凝性水泥熟料[J].硅酸盐学报,2004,32(7):873-879. 被引量:28
  • 2曲建华,曾现洋,徐广印,吴丽美.层次分析法中判断矩阵的比例标度和一致性研究[J].平顶山工学院学报,2005,14(1):50-53. 被引量:16
  • 3柳俊哲.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝土,2005(11):10-13. 被引量:62
  • 4王恒栋,赵国藩.基于人工神经网络的混凝土碳化分析[J].水运工程,1996(1):9-11. 被引量:4
  • 5PAPADAKIS V G.. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress [ J ]. Cement and Concrete Research, 2000 (30) :291 - 299.
  • 6ALEXANDER S, DIETER D. Modeling carbonation for corrosion risk prediction of concrete structures [ J]. Cement and Concrete Research, 2002 (32) :935-941.
  • 7RAFIQ M Y, BUGMANN G, EASTERBROOL D J. Neural network design for engineering applications [ J ]. Computers and Structures, 2001 ( 79 ) : 1541-1552.
  • 8PARTHIBAN T, RAVI R, PARTHIBAN G T, et al. Neural network analysis for corrosion of steel in concrete [ J ]. Corrosion Science, 2005 (47) : 1625-1642.
  • 9金·霍尔门.大气中二氧化碳浓度创新高2015年将达最高值[EB/OL].中国能源网,2008-01-22.
  • 10阿列克谢耶夫 黄可信 吴兴祖译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983..

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部