期刊文献+

基于蜉蝣算法的非合作博弈Nash均衡求解

Solving Nash Equilibrium for N-Persons’Non-Cooperative Game Based on Mayfly Algorithm
下载PDF
导出
摘要 鉴于凸优化问题算法在非合作博弈Nash均衡的求解中具有一定的局限性,N人非合作博弈Nash均衡求解是NP问题,提出一种N人非合作博弈Nash均衡求解问题的改进仿生算法-蜉蝣算法(MA)。算法中蜉蝣通过个体最优位置及全体最优位置调整位置来搜索最优解,同时引入高斯变异算子提高算法搜素能力。根据Nash均衡的解空间为单纯形的特性,采用固定初始化点和随机初始化点相结合的方式,提高搜索速度且结果不局限于纯策略。实验表明,蜉蝣算法求解Nash均衡效果优于烟花算法、免疫粒子群算法,特别地,对于高维博弈问题也有很好的效果。 In view of the limitation of convex optimization algorithm in solving the Nash equilibrium of non-cooperative game,the Nash equilibrium of n-person non-cooperative game is NP problem,an improved bionic algorithm for solving the Nash equilibrium of N-person non-cooperative game,Mayfly algorithm(MA),is proposed.In this algorithm,Mayfly searches the optimal solution by adjusting the position of individual optimal position and all optimal position,and introduces Gaussian mutation operator to improve the search ability of the algorithm.According to the characteristics that the solution space of Nash equilibrium is simplex,the fixed initialization point and random initialization point are combined to improve the search speed and the results are not limited to pure strategy.Experiments show that mayfly algorithm is better than fireworks algorithm and immune particle swarm algorithm in solving Nash equilibrium,especially for high dimensional game problems.
作者 胡作鹏 杨彦龙 贾文生 HU Zuo-peng;YANG Yan-long;JIA Wen-sheng(College of Mathematics and Statistics,Guizhou University,Guiyang Guizhou 550025,China)
出处 《计算机仿真》 2024年第7期411-416,共6页 Computer Simulation
基金 国家自然科学基金(12061020),黔科合LH字[2017]7223,贵大人基合字(2019)49。
关键词 非合作博弈 均衡求解 蜉蝣算法 Non-cooperative game Equilibrium solving Mayfly algorithm
  • 相关文献

参考文献7

二级参考文献65

  • 1余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 2陈曦,蒋加伏.免疫粒子群优化算法求解旅行商问题[J].计算机与数字工程,2006,34(6):10-12. 被引量:11
  • 3邱中华,高洁,朱跃星.应用免疫算法求解博弈问题[J].系统工程学报,2006,21(4):398-404. 被引量:10
  • 4隗立涛,修乃华.基于启发搜索算法的纳什均衡计算[J].北京交通大学学报,2007,31(3):58-62. 被引量:9
  • 5Pavlidis N G,Parsopoulos K E,Vrahatis M N.Computing Nash Equilibria Through Computational Intelligence Methods[J].Journal of Computational andApplied Mathematics,2005,175(1):113-136.
  • 6Parsopouios K E,Vrahatis M N.On the Computation of All Global Minimizers Through Particle Swarm Optimization[J].IEEE Transactions On Evolutionary Computation,2004,8(3):211-224.
  • 7Dofigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 8Dreo J,Siarry P.An Ant Colony Algorithm Aimed at Dynamic Continuous Optimization[J].Applied Mathematics and Computation,2006,181(1):457-467.
  • 9Krzysztof S,Dongo M.Ant Colony Optimization for Continuous Domains[J].European Journal of Operational Research,2006,185(3):1155-1173.
  • 10Baskan O,Haldenbilen S,Ceylan H.A New Solution Algorithm for Improving Performance of Ant Colony Optimization[J].Applied Mathematics and Computation,2009,211(1):75-84.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部