摘要
目的筛选具有PPARδ激动活性的化合物。方法通过构建PPARδ药效团模型对Top Science数据库中的780万个小分子进行筛选,并采用对接分析通过化合物与受体之间的结合作用模式及其靶点选择性进行筛选;通过分子动力学模拟的方法,确定苗头化合物,进而通过体外活性实验获得PPARδ激动剂。结果通过计算机虚拟筛选获得了24个潜在PPARδ激动剂,分子对接结果表明,化合物3、5、9为潜在的PPARδ选择性激动剂。体外激动活性实验表明化合物3、5、9具有一定的PPARδ激动活性。结论与化合物3、5相比,化合物9拥有更强的体外激动活性(EC_(50)=17.66μmol·L^(-1)),后续可进行结构迭代优化,为进一步开发PPARδ激动剂奠定了基础。
Objective To screen the compounds with PPARδagonizing activity.Methods PPARδpharmacophore model was established to screen 7.8 million small molecules in the Top Science database.Docking analysis was used to screen the binding mode and target selectivity between compounds and receptors.PPARδagonists were obtained by in vitro activity experiment after identifying the hits with molecular dynamics simulation.Results Totally 24 potential PPARδagonists were obtained by computer virtual screening.Molecular docking indicated that compounds 3,5,and 9 were potential PPARδselective agonists and showed certain PPARδactivity in the in vitro activity tests.Conclusion Compound 9 can be used as a hit for structural iterative optimization,which lays a foundation for further development of PPARδagonists with stronger in vitro activity(EC_(50)=17.66μmol·L^(-1)).
作者
李琦
魏朝
张鑫磊
郭凯蕾
马丽莎
何金穗
孙定康
梁佳龙
林佳艳
张彭湃
刘雪英
LI Qi;WEI Zhao;ZHANG Xin-lei;GUO Kai-lei;MA Li-sha;HE Jin-sui;SUN Ding-kang;LIANG Jia-long;LIN Jia-yan;ZHANG Peng-pai;LIU Xue-ying(College of Life Sciences,Henan University,Kaifeng Henan 475004;Department of Pharmacy,Air Force Military Medical University,Xi’an 710000;School of Pharmacy,Shaanxi University of Traditional Chinese Medicine,Xianyang Shaanxi 712046;Medical Security Center of the 946 Hospital of the Chinese People’s Liberation Army,Yining Xinjiang 835000)
出处
《中南药学》
CAS
2024年第7期1705-1711,共7页
Central South Pharmacy
基金
陕西省2021年创新能力支持计划(No.2021GCZX-07号)
陕西省秦创原“科学家+工程师”队伍建设(No.2023KXJ-080号)。
关键词
虚拟筛选
药效团模型
分子对接
分子动力学模拟
virtual screening
pharmacophore model
molecular docking
molecular dynamics simulation