期刊文献+

基于VMD-KSVD字典学习降噪的大坝变形预测

Dam Deformation Prediction Based on VMD andKSVD Dictionary Learning Noise Reduction
下载PDF
导出
摘要 提出一种自适应变分模态分解和KSVD字典学习相结合的降噪算法。该方法对监测序列分解后的子序列进行降噪,同时考虑残差序列的特征,从而充分保留监测序列中的有效信息。以某大坝变形监测数据为例进行测试,结果表明,该方法能够较好地保留监测序列中的有效信息,相较于传统的降噪算法更适用于复杂情况下的大坝变形预测,能进一步提高预测模型的泛化能力。 This paper proposes a noise reduction algorithm combining adaptive variational mode decomposition and KSVD dictionary learning.In this method,we fully retain the effective information in the monitoring sequence by denoising the sub-sequences after the decomposition of the monitoring sequence,and consider the features in the residual sequence.We take the deformation monitoring data of a dam as an example.The results show that the proposed method can effectively retain the effective information in the monitoring sequence,and is more suitable for dam deformation prediction under complex conditions than the traditional noise reduction method,and can further improve the generalization ability of the prediction model.
作者 柳磊 李登华 丁勇 LIU Lei;LI Denghua;DING Yong(School of Physics,Nanjing University of Science and Technology,Nanjing 210094,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Reservoir Dam Safety,MWR,Nanjing 210024,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2024年第9期951-958,984,共9页 Journal of Geodesy and Geodynamics
基金 国家重点研发计划(2022YFC3005502) 国家自然科学基金(51979174,U2240221)。
关键词 自适应变分模态分解 KSVD 字典学习 变形预测 大坝安全监测 adaptive variational mode decomposition KSVD dictionary learning deformation prediction dam safety monitoring
  • 相关文献

参考文献11

二级参考文献141

  • 1周聪,汤井田,原源,邓居智,石福升,李勇.大地电磁多参考站阵列数据处理方法[J].石油地球物理勘探,2020(6):1373-1382. 被引量:7
  • 2郭振天,黄峰,郭利丹,吴瑶.鄱阳湖水位时空演变驱动因子研究[J].水力发电学报,2020,39(12):25-36. 被引量:14
  • 3钮新强.大坝安全诊断与加固技术[J].水利学报,2007,38(S1):60-64. 被引量:11
  • 4BOUBCHIR L,BOASHASH B. Wavelet denoising based on the map estimation using the BKF prior with applica- tion to images and EEG signals[J]. IEEE Transactions on Signal Processing, 2013,61(8) : 1880-1894.
  • 5FLANDRIN P, RILLING G, GONCALVES P. Em- pirical mode decomposition as a filter bank[J]. Signal Processing Letters, IEEE, 2004,11(2):112-114.
  • 6MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries [ J ]. Signal Processing, IEEE Transactions on, 1993,41 (12) : 3397-3415.
  • 7TROPP J A,GILBERT A C.Signal recovery from ran- dom measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12) : 4655-4666.
  • 8OLSHAUSEN B A.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381(6583) :607-609.
  • 9WANG Xinqing, ZHU Huijie, WANG Dong, et al. The diagnosis of rolling bearing based on the parame- ters of pulse atoms and degree of cyclostationarity[J], Journal of Vibroengineering, 2013,15(3) : 1560-1575.
  • 10CHEN S S, DONOHO D L, SAUNDERS M A. A- tomic decomposition by basis pursuit[J]. SIAM Jour- nal on Scientific Computing, 1998,20(1) :33-61.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部