摘要
三维电极体系下曝气对含油废水破乳除油效果有着显著性增强。本研究采用新型三相三维电级工艺,通过正交实验优化曝气条件,深入探讨强化水-油微界面破乳过程的控制机制。实验结果表明,曝气量由2.0 L/min降低到1.5 L/min,此时的COD和含油量分别为107、1.35 mg/L,满足回注水标准,且明显提高了节能效率。将曝气条件加入数值模拟,利用COMSOL软件模拟乳化油滴破乳及聚集的过程。在电场和气场力的共同作用下,增加了油滴拉伸变形的程度,破坏水-油微界面膜的机械强度,加速油滴脱稳过程,进而快速发生团聚。这一研究对强化电化学处理含油废水,具有重大的指导意义。
Aeration in a three-dimensional electrode system significantly enhanced the effect of demulsification and oil removal in oil-bearing wastewater.In this study,a new three-phase three-dimensional electrical stage process was used to optimize the aeration conditions through orthogonal experiments.The control mechanism of the enhanced water-oil micro-interface demulsification process was deeply explored.The experimental results showed that the aeration volume is reduced from 2.0 L/min to 1.5 L/min accompanied by the COD and oil content are 107 mg/L and 1.35 mg/L,respectively.The results meet the standard of re-injection water and significantly improve the energy-saving efficiency.The aeration conditions were added to the numerical simulation and the process of emulsified oil droplet breaking and aggregation was simulated by using COMSOL software.The combined effect of electric and gas field forces increases the degree of oil droplet stretching and deformation,destroys the mechanical strength of the water-oil micro-interface film,accelerates the oil droplet destabilization process,and then rapid agglomeration occurs.This study has great guidance for the enhanced electrochemical treatment of oily wastewater.
作者
王冰
潘海丰
刘光洲
姚萌
WANG Bing;PAN Haifeng;LIU Guangzhou;YAO Meng(School of Municipal and Environmental Engineering,Shenyang University of Architecture,Shenyang 110168,China;Shenzhen Institute of Information Technology,Shenzhen 518172,China)
出处
《水处理技术》
CAS
CSCD
北大核心
2024年第8期28-32,共5页
Technology of Water Treatment
基金
辽宁省科技厅应用基础研究计划-应用基础研究计划-基于NDFO铁氧化物生物循环的Feammox过程氮转化机制研究(2022JH2/101300120)
深圳市高等院校稳定支持计划-MOFs/CQDs协同改性超滤膜处理高藻水效能及膜污染特性研究(20220817233950003)。
关键词
水-油微界面
含油废水
曝气强度
仿真模拟
water-oil micro-interface
oil-bearing wastewater
aeration intensity
simulation