期刊文献+

Squeeze and Excitation Convolution with Shortcut for Complex Plasma Image Recognition

下载PDF
导出
摘要 Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第8期2221-2236,共16页 计算机、材料和连续体(英文)
基金 This study was supported by a grand from the National Natural Science Foundation of China(No.12075315).
  • 相关文献

参考文献2

二级参考文献29

  • 1Text Retrieval Conference (TREC) [Online], available: http://trec.nist.gov/, April 5, 2016.
  • 2National Institute of Standards and Technology (NIST) [Online], available: http://www.nist.gov/index.html, April 5, 2016.
  • 3TREC Video Retrieval Evaluation (TRECVID) [Online], available: http://www-nlpir.nist.gov/projects/trecvid/, Ap- ril 5, 2016.
  • 4Dollar P, Wojek C, Schiele B, Perona P. Pedestrian detec- tion: an evaluation of the state of the art. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743--761.
  • 5Benenson R, Omran M, Hosang J, Schiele B. Ten years of pedestrian detection, what have we learned? In: Proceed- ings of the 12th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 613-627.
  • 6Dalal N, Triggs B. Histograms of oriented gradients for hu- man detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition. San Diego, USA: IEEE, 2005. 886-893.
  • 7Felzenszwalb P, McAllester D, Ramanan D. A discrimina- tively trained, multiscale, deformable part model. In: Pro- ceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008. 1-8.
  • 8Ouyang W, Wang X. Joint deep learning for pedestrian de- tection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 2056-2063.
  • 9Luo P, Tian Y, Wang X, Tang X. Switchable deep network for pedestrian detection. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA: IEEE, 2014. 899-906.
  • 10Hosang J, Omran M, Benenson R, Schiele B. Taking a deeper look at pedestrians. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recog- nition. Boston, USA: IEEE, 2015. 4073-4082.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部