期刊文献+

Transient state analysis of a rub-impact rotor system during maneuvering flight

原文传递
导出
摘要 Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,a nonlinear dynamic model for describing the dynamic characteristics of a rub-impact rotor system during maneuvering flight is established based on the Lagrange equations.Subsequently,numerical simulations employing the Newmark method are performed,delving into the detailed discussion of the influence of parameters such as rotational speed and maneuvering flight on the transient and steady-state responses of the rotor system.The effect mechanism of maneuver load and its coupling with rub impact is revealed.The results show that the impact response induced by maneuvering flight is more obvious in the subcritical state than in the supercritical state.The additional stiffness and damping are also induced;in particular,the additional damping has a coupling effect.Moreover,the rub impact imposes an additional constraint on the rotor system,thereby weakening the influence of the maneuver load and becoming the major factor that determines the dynamic behavior of the rotor system at high speeds.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期236-251,共16页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.12202229) the Science Center for Gas Turbine Project,China(No.P2022-B-III-002-001) the Scientific Research Projects of Tianjin Education Commission,China(Nos.2020KJ018,2020KJ060).
  • 相关文献

参考文献8

二级参考文献18

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部