期刊文献+

空间目标T/R-R型雷达多视角融合成像算法

Multi-view fusion imaging algorithm for T/R-R radar of space targets
下载PDF
导出
摘要 针对T/R-R(transmitting receiving-receiving)构型雷达成像实际,结合空间目标的轨道先验和双基地逆合成孔径雷达(inverse synthetic aperture radar,ISAR)成像的体制优势,提出了一种基于复贝叶斯压缩感知(Bayesian compressed sensing,BCS)算法的T/R-R型雷达稀疏孔径多视角融合成像方法。所提方法在建立双站雷达融合成像模型的基础上,利用Laplace先验在复数域建立目标的稀疏模型,提高了算法的稀疏促进作用,获得了高分辨目标图像。仿真实验结果表明,所提方法不仅可实现双站雷达多视角的融合成像,还可实现双站雷达各自存在稀疏孔径条件下的多视角融合成像,进一步拓展了应用场景,可有效提高方位分辨率和成像质量。 A T/R-R(transmitting receiving-receiving)radar sparse aperture multi-view fusion imaging method based on the complex Bayesian compressed sensing(BCS)algorithm is proposed for the practical imaging of T/R-R configuration radar,taking into account the orbital priors of space targets and the advantages of the dual-station inverse synthetic aperture radar(ISAR)imaging system.On the basis of establishing a dual station radar fusion imaging model,the proposed method utilizes Laplace priors to establish a sparse model of the target in the complex domain,improving the sparsity promotion effect of the algorithm and obtaining high-resolution target images.The simulation experiment results show that the proposed method can not only achieve multi-view fusion imaging of dual station radar,but also achieve multi-view fusion imaging of dual-station radar with sparse aperture respectively,further expanding the application scenarios and effectively improving azimuth resolution and imaging quality.
作者 郭宝锋 焦丽婷 李胜 朱晓秀 薛东方 孙慧贤 GUO Baofeng;JIAO Liting;LI Sheng;ZHU Xiaoxiu;XUE Dongfang;SUN Huixian(Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050003,China;Unit 63963 of the PLA,Beijing 100072,China;Unit 32398 of the PLA,Beijing 100192,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3019-3030,共12页 Systems Engineering and Electronics
基金 国家自然科学基金(61601496) 河北省自然科学基金(F2019506031)资助课题。
关键词 T/R-R型雷达 空间目标 多视角融合成像 T/R-R(transmitting receiving-receiving)radar space target multi-view fusion imaging
  • 相关文献

参考文献6

二级参考文献71

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部