期刊文献+

Network traffic classification:Techniques,datasets,and challenges 被引量:1

下载PDF
导出
摘要 In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.
出处 《Digital Communications and Networks》 SCIE CSCD 2024年第3期676-692,共17页 数字通信与网络(英文版)
  • 相关文献

参考文献2

二级参考文献24

  • 1杜敏,陈兴蜀,谭骏.A Novel P2P Traffic Identification Algorithm Based on BPSO and Weighted KNN[J].China Communications,2011,8(2):52-58. 被引量:6
  • 2VALENTI S, ROSSI D, DAINOTTI A, et al. Re- viewing Traffic Classification[M]. Springer Be- rlin Heidelberg, 2013.
  • 3CALLADO A, KAMIENSK! C, SZABO G, et al. A Survey on Internet Traffic Identification[J]. IEEE Communications Surveys and Tutorials, 2009, ii(3): 37-52.
  • 4NGUYEN T T T, ARMITAGE G. A Survey of Tec- hniques for Internet Traffic Classification Us- ing Machine Learning[J]. IEEE Communications Surveys and Tutorials, 2008, 3.0(4): 56-76.
  • 5HU Bin, SHEN Yi. Machine Learning Based Net- work Traffic Classification: A Survey[J]. Journal of Information and Computational Science, 2012, 9(11): 3161-4170.
  • 6CROTTI M, DUS! M, GRINGOLI F, et al. Traffic Classification Through Simple Statistical Fin- gerprinting[C]. ACM SIGCOMM Computer Communication Review, 2007, 37(1): 5-16.
  • 7BERNAILLE L, TEIXEIRA R, AKODKENOU I, et al Traffic Classification on the Fly[J]. ACM SIGC- OMM Computer Communication Review, 2006, 36(2): 23-26.
  • 8KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: Multilevel Traffic Classification in the Dark[J]. ACM SIGCOMM Computer Com- munication Review, 2005, 35(4): 229-240.
  • 9LU Gang, ZHANG Hongli, SHA Xuefu, et al. TCFOM: A Robust Traffic Classification Frame- work Based on OC-SVM Combined with MC-SVM [C]// Proceedings of 2010 International Con- ference on Communications and Intelligence Information Security (ICCIIS): October 13-14, 2010. Nanning, China. IEEE, 2010: 180-186.
  • 10L7 Filter[EB/OL]. http://17-filter.sourceforge.net.

共引文献19

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部