期刊文献+

基于连通域分割与SVM的城轨百米标检测与识别算法

Detection and Recognition Algorithm for 100-Meter Signage in Urban Rail Transit Based on Connected Domain Segmentation and SVM
下载PDF
导出
摘要 城轨道路沿线的百米标志牌是统计行车里程、辅助建图定位的重要参考信息,对其的检测与识别将有助于轨道交通车辆的智能驾驶与维护。文章基于传统的检测与识别技术归纳总结了一种百米标检测识别通用算法,其基于收缩算法进行检测定位,再基于模板匹配进行百米标上的数字识别;同时,对通用算法进行了优化改进,提出了一种基于连通域分割检测与支持向量机(SVM)数字识别的百米标检测识别算法。首先,在对图像进行二值化、形态学填充等预处理后,基于连通域分割剔除噪点斑块并完成百米标定位;然后,对定位得到的百米标进行背景噪点剔除、倾斜校正及字符分割;最后,再将获得的字符输入SVM模型进行识别。实验结果表明,优化后的算法对于百米标的检测准确率提升了约34.4个百分点,识别准确率提高了约25.6个百分点。 Hundred-meter signage within urban rail transit systems offer important benchmark information for train mileage statistics and aid in mapping and positioning.The detection and recognition of these markers contribute to the intelligent operation and maintenance of rail transit vehicles.This study identified a general algorithm for detecting and recognizing 100-meter signage,based on traditional techniques in this field.This approach employs a shrinkage algorithm for detection and positioning,and adopts template matching for digit recognition on the 100-meter signage.This general algorithm was then modified and optimized,leading to the development of a 100-meter signage detection and recognition algorithm that utilizes connected domain segmentation for detection and a support vector machine(SVM)for digit recognition.The process begins with image preprocessing,which includes binarization and morphological filling.Following this,noise and patches are removed leveraging connected domain segmentation,to facilitate the localization of the 100-meter signage.The positioned signages are then processed for background noise removal,tilt correction,and character segmentation.Finally,the extracted characters are input into the SVM model for recognition.The optimized algorithm demonstrated significant improvements,with detection accuracies increasing by approximately 34.4 percentage points and recognition accuracies by approximately 25.6 percentage points for 100-meter signage in subsequent experiments.
作者 袁小军 田野 苏震 刘昕武 李晨 张慧源 YUAN Xiaojun;TIAN Ye;SU Zhen;LIU Xinwu;LI Chen;ZHANG Huiyuan(Zhuzhou CRRC Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China)
出处 《控制与信息技术》 2024年第4期82-89,共8页 CONTROL AND INFORMATION TECHNOLOGY
基金 国家重点研发计划项目(2021ZD0109805)。
关键词 城市轨道交通 百米标 标志牌检测 连通域分割 数字识别 SVM urban rail transit 100-meter signage signage detection connected domain segmentation digital recognition support vector machine(SVM)
  • 相关文献

参考文献5

二级参考文献44

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部