期刊文献+

A concise proof of Benford's law

原文传递
导出
摘要 This article presents a concise proof of the famous Benford's law when the distribution has a Riemann integrable probability density function and provides a criterion to judge whether a distribution obeys the law.The proof is intuitive and elegant,accessible to anyone with basic knowledge of calculus,revealing that the law originates from the basic property of human number system.The criterion can bring great convenience to the field of fraud detection.
出处 《Fundamental Research》 CAS CSCD 2024年第4期841-844,共4页 自然科学基础研究(英文版)
基金 National Natural Science Foundation of China(12075003).
  • 相关文献

参考文献3

二级参考文献23

  • 1S. Newcomb, Am. J. Math. 4 (1881) 39.
  • 2F. Benford, Proc. Am. Phil. Soc. 78 (1938) 551.
  • 3R.S. Pinkham, Annu. Math. Mon. 76 (1961) 342.
  • 4T. Hill, Proc. Am. Math. Soc. 123 (1995) 887.
  • 5T. Hill, Am. Math. Mon. 102 (1995) 323.
  • 6T. Hill, Stat. Sci. 10 (1995) 354.
  • 7B. Buck, A.C. Merchant, and S.M. Perez, Eur. J. Phys. 14 (1993) 59.
  • 8Xiao-Ping Zhang and Zhong-Zhou Ren, Phys. Rev. C 73 014305 (2006).
  • 9Xiao-Ping Zhang and Zhong-Zhou Ren, J. Phys. G: Nucl. Part. Phys. 34 (2007) 2611.
  • 10G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729 (2003) 3.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部