期刊文献+

ZnSnO_(3)/g-C_(3)N_(4)催化剂的制备及其光催化降解性能的研究

Preparation of ZnSnO_(3)/g-C_(3)N_(4)Catalyst and its Photocatalytic Degradation Performance
下载PDF
导出
摘要 当前,水污染已经严重影响到人类生存和社会发展。为了解决这个问题,人们利用光催化剂来处理水中污染物。本文选用水热法,以石墨相氮化碳(g-C_(3)N_(4))作为载体,掺杂少量偏锡酸锌制备新型光催化剂来降低水中污染物含量,并研究了该催化剂的最佳制备条件。通过研究该催化剂对罗丹明B的降解效果发现,当掺杂量达到10%,反应温度控制在150℃,反应时间为4 h时制备的ZnSnO_(3)/g-C_(3)N_(4)催化剂的光催化性能最佳。在10 mg/L罗丹明B溶液中加入80 mg该催化剂,当光催化反应时间为100 min时,罗丹明B降解率达到83.61%。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、空隙及比表面积测试仪(BET)等对ZnSnO_(3)/g-C_(3)N_(4)催化剂进行检测,了解其形貌特征。 Human survival and social development have been seriously affected by water pollution.In order to solve this problem,photocatalysts are used to treat pollutants in water.A hydrothermal method was chosen to prepare a new photocatalyst used graphite-phase carbon nitride(g-C_(3)N_(4))as a carrier,doped with a small amount of ZnSnO_(3)to reduce the contaminant content in water,and the optimum conditions for the preparation of this catalyst were investigated.The photocatalytic activity of ZnSnO_(3)/g-C_(3)N_(4)catalyst was found to be the best when the amount of doping was 10%,the reaction temperature was controlled at 150℃and the reaction time was 4 hours.When 80 mg of the catalyst was added to 10 mg/L rhodamine B solution,the degradation rate of rhodamine B reached 83.61%when the photocatalytic reaction time was 100 min.The morphological and composition characteristics of ZnSnO_(3)/g-C_(3)N_(4)catalyst were detected by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD)and BET.
作者 赵悠然 陈荣柱 熊壮 张苗苗 项丰达 杨尚武 曹英寒 ZHAO Youran;CHEN Rongzhu;XIONG Zhuang;ZHANG Miaomiao;XIANG Fengda;YANG Shangwu;CAO Yinghan(School of Biological and Chemical Engineering,Nanyang Institute of Technology,Nanyang Henan 473000,China)
出处 《江西化工》 CAS 2024年第4期57-61,共5页 Jiangxi Chemical Industry
基金 南阳理工学院2023年度大学生科研基金项目。
关键词 ZnSnO_(3)/g-C_(3)N_(4) 水处理 光催化 降解 ZnSnO_(3)/g-C_(3)N_(4) water treatment photocatalysis degradation
  • 相关文献

参考文献7

二级参考文献44

  • 1刘天模,赵先锐,利佳,邓博,李家鸣.纳米偏锡酸锌粉末的制备及气敏性能研究[J].材料科学与工程学报,2006,24(3):334-336. 被引量:2
  • 2杜慧,牛新书,蒋凯.ZnSnO_3纳米粉体的制备及气敏特性[J].传感器与微系统,2007,26(4):14-17. 被引量:3
  • 3FANG Cai Hong, GENG Bao You, LIU Jun, et al. D-Fructose molecule template route to ultra thin ZnSnO3 nanowire ar- chitectures and their application as efficient photocatalyst[J]. Chem Comm, 2009(17): 2350-2352.
  • 4ZENG Jia, XIN Mu Di, LI KunWei, et al. Transformation process and photocatalytic activities of hydrothermally synthe- sized[J]. J Phys Chem C, 2008, 112: 4159-4167.
  • 5WU Hua Qiang, YAO You Zhi, LI Wen Ting, et al. Microwave-assisted synthesis of ZnxCdl-xS-MWCNT heterostruc- tures and their photocatalytic properties[J]. J Nanopart Res, 2010, 13(5): 2225-2234.
  • 6高彩玲,艾南山,赵英明.能源可持续利用方程及我国能源环境战略思考[J].环境与可持续发展,2007,32(5):38-40. 被引量:4
  • 7Chen X B,Shen S H,Guo L J,et al.Semiconductor-based Photocatalytic Hydrogen Generation[J].Chemical Reviews,2010,110(11):6503-6570.
  • 8Hoffmann M R,Martin S T,Choi W Y,et al.Environmental Applcations of Semiconductor Photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
  • 9Kudo A,Miseki Y.Heterogeneous Photocatalyst Materials for Water Splitting[J].Chemical Society Reviews,2009,38(1):253-278.
  • 10Maeda K,Domen,Kazunari.Photocatalytic Water Splitting:Recent Progress and Future Challenges[J].Jouranal of Physical Chemistry Letters,2010,1(18):2655-2661.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部