期刊文献+

基于近端策略优化的智能抗干扰决策算法

Intelligent anti-jamming decision algorithm based on proximal policy optimization
下载PDF
导出
摘要 针对现有基于深度强化学习的智能抗干扰方法应用于天地测控通信链路时,用于决策的深度神经网络结构复杂,卫星等飞行器资源受限,难以在有限的复杂度约束下独立完成复杂神经网络的及时训练,抗干扰决策无法收敛的问题,提出了一种基于近端策略优化的智能抗干扰决策算法。分别在飞行器和地面站部署决策神经网络和训练神经网络,地面站根据飞行器反馈的经验信息进行最优化离线训练,辅助决策神经网络进行参数更新,在满足飞行器资源约束的同时实现有效的抗干扰策略选择。仿真结果表明,与基于策略梯度和基于深度Q学习的决策算法相比,所提算法收敛速度提升37%,收敛后的系统容量提升25%。 The existing intelligent anti-jamming methods based on deep reinforcement learning are applied to space-ground TT&C and communication links,in which the deep neural network used for decision-making has a complex structure,and the resources of satellites and other vehicles are limited,making it difficult to independently complete the timely training of complex neural network under the constraints of limited complexity,and the decision-making of anti-jamming cannot converge.Aiming at the above problems,an intelligent anti-jamming decision algorithm based on proximal policy optimization was proposed,which deployed the decision-making neural network and the training neural network in the vehicles and the ground station,respectively.The ground station conducted the optimal offline training based on the empirical information feedback from the vehicles,and assisted the decision-making neural network in parameter updating,thereby achieving the effective selection of anti-jamming strategies while satisfying the resource constraints of the vehicles.The simulation results demonstrate that the convergence speed of the proposed algorithm is increased by 37%,and the system capacity after convergence is increased by 25%,compared with the decision algorithms of policy gradient and deep Q-learning.
作者 马松 李黎 黎伟 黄巍 王军 MA Song;LI Li;LI Wei;HUANG Wei;WANG Jun(Southwest China Institute of Electronic Technology,Chengdu 610036,China;National Key Laboratory of Wireless Communications,University of Electronic Science and Technology of China,Chengdu 611731,China;Southwest China Research Institute of Electronic Equipment,Chengdu 610036,China)
出处 《通信学报》 EI CSCD 北大核心 2024年第8期249-257,共9页 Journal on Communications
基金 国家自然科学基金资助项目(No.62131005,No.62071096)。
关键词 近端策略优化 深度强化学习 智能抗干扰 抗干扰决策 proximal policy optimization deep reinforcement learning intelligent anti-jamming anti-jamming decision
  • 相关文献

参考文献12

二级参考文献88

  • 1张贤达.盲信号处理几个关键问题的研究[J].深圳大学学报(理工版),2004,21(3):196-200. 被引量:9
  • 2张宏科,黄道超.智慧标识网络的未来互联网体系[J].电信科学,2013,29(S1):20-28. 被引量:4
  • 3姚富强.军事通信抗干扰工程发展策略研究及建议[J].中国工程科学,2005,7(5):24-29. 被引量:8
  • 4ZENG Y H, LIANG Y C. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio [ J ]. IEEE Trans. Veh. Technol. ,2009,57(6) :1784 - 1793.
  • 5ZENG Y H,LIANG Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances [J]. IEEE Trans. Veh. Technol. ,2009,58 ( 4 ) : 1804 - 1815.
  • 6PERTTI HENTTU, SAMI AROMAA. Consecutive Mean Excision Algorithm [ C]//IEEE 7 Int Symp. on Spread- Spectrum Tech& Appl. Prague, Sept. 2- 5. 2002:51 - 517.
  • 7吕再兴 程郁凡.基于频域的盲干扰检测算法研究.现代军事通信,2011,:15-15.
  • 8VARTIAINEN J,LEHTOMAKI J J,SAARNISAARI H. Doubule-Threshold Based Narrowband Signal Extraction [ C]// Vehicular Technology Conference, 2005 IEEE 61st,2:1288 - 1292.
  • 9ROBERTS M L, TEMPLE M A, RAINES R A, et al. Communication waveform design using an adaptive spectrally modulated, spectrally encoded ( SMSE ) framework [ J ]. IEEE Journal of Selected Topics in Signal Processing,2007,1 ( 1 ) :203 - 213.
  • 10DILLARD G M,REUTER M,ZEIDLER J,et al. Cyclie Code Shift Keying:A Low Probability of Intercept Communication Technique [J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):786 -798.

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部