期刊文献+

基于改进Q-Learning的移动机器人路径规划算法

Path planning algorithm of mobile robot based on improved Q-Learning
下载PDF
导出
摘要 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 With the in-depth application of mobile robot in production and life,its path planning ability also needs to develop to both rapidity and environmental adaptability.In order to solve the problems existing in the existing mobile robot path planning using reinforcement learning methods,which are easy to fall into local optimization in the early stage of exploration,repeatedly search the same area,and explore the late convergence rate and slow convergence rate,an improved Q-Learning algorithm is proposed in this study.The algorithm improves the Q matrix assignment method to make the exploration process directional in the early iteration and reduces the collision situation;the Q matrix iterative method is improved to make the Q matrix update forward-looking and avoid repeated exploration in a small area;the random exploration strategy is improved to make full use of environmental information in the early iteration and close to the target point in the later stage.The simulation results of different raster maps show that the algorithm in this paper has higher computational efficiency by reducing the path length,reducing jitter and improving the speed of convergence based on the Q-Learning algorithm.
作者 王立勇 王弘轩 苏清华 王绅同 张鹏博 Wang Liyong;Wang Hongxuan;Su Qinghua;Wang Shentong;Zhang Pengbo(Key Laboratory of Modern Measurement and Control Technology,Ministry of Education,Beijing Information Science and Technology University,Beijing 100192,China)
出处 《电子测量技术》 北大核心 2024年第9期85-92,共8页 Electronic Measurement Technology
基金 基础加强计划基金(2021JCJQJJ0022) 国家自然科学基金(52175074)项目资助。
关键词 路径规划 强化学习 移动机器人 Q-Learning算法 ε-decreasing策略 path planning reinforcement learning mobile robot Q-Learning algorithm ε-decreasing strategy
  • 相关文献

参考文献8

二级参考文献56

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部