期刊文献+

纤维增强复合材料柔性封堵结构分析与验证

Analysis and Verification of Flexible Sealing Structures Based on Fiber-reinforced Composites
下载PDF
导出
摘要 变弯度机翼展向翼端面封堵结构对于提升可变体机翼的变形精度、防止气流分离重要作用。本文针对刚柔耦合变弯度前缘结构,提出了以纤维增强复合材料为壳体,填充弹性基柔性材料的柔性封堵结构设计方案,建立了有限元模型在结构载荷作用下对其力学性能、封堵性能进行分析,制备所设计的柔性封堵结构并对其进行了试验验证。结果表明:(1)柔性封堵结构仿真模拟结果符合实际变形情况,最大应力为412.96 MPa,最大应变为4.15%;沿机翼弦向方向的位移从固定端向前缘逐渐变大,最大位移为6.28 mm;(2)所制备的柔性封堵结构在进行初次压缩试验后,其载荷值随位移的变化近似线性变化,满足变弯度机翼前缘的变形需求。 The spanwise end sealing structure of variable camber wing plays an important role in improving the deformation accuracy of variable wing and preventing airflow separation.Aiming at the rigid and flexible coupling variable bending front structure,this paper proposes a flexible sealing structure design scheme with fiber-reinforced composite material as the shell and elastic base flexible material as the filler.A finite element model is established to analyze its mechanical properties and sealing properties under the action of structural loads.The designed flexible sealing structure is prepared and verified by experiments.The results show:(1)The simulation results of the flexible sealing structure accord with the actual deformation,the maximum stress is 412.96 MPa,and the maximum stain is 4.15%,the displacement along the wing chord gradually increases from the fixed end to the front edge,and the maximum displacement is 6.28 mm;(2)After the initial compression test,the load value of the prepared flexible sealing structure changes approximately linearly with the change of displacement,meeting the deformation requirements of the leading edge of the variable bending machine.
作者 芦奕菲 鲍盘盘 吴琪 王志刚 刘钢 LU Yifei;BAO Panpan;WU Qi;WANG Zhigang;LIU Gang(National Key Laboratory od Structural Integrity,Aircraft strengh Research Institute of China,Xi’an 710065)
出处 《纤维复合材料》 CAS 2024年第3期69-76,共8页 Fiber Composites
关键词 变弯度机翼 柔性封堵结构 纤维增强复合材料 力学性能 variable camber wing flexible sealing structure fiber reinforced composite material mechanical properties
  • 相关文献

参考文献1

二级参考文献16

  • 1Rossi M, Austin F, Van Nostrand W. Active Rib Experiment for Shape Control of an Adaptive Wing [ A ]. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference [ C ]. Washington, D C, 1993:233-266.
  • 2Bein Th, Hanselka H, Breitbach E. An Adaptive Spoiler to Control the Transonic Shock [ J ]. Smart Material Structure ,2000, (9) : 141-148.
  • 3Munday D ,Jacob J. Active Control of Separation on a Wing with Oscillating Camber [J]. Journal of Aircraft,2002,39 (1) :187-189.
  • 4Streleca J K, Lagoudasa D C. Fabrication and Testing of a Shape Memory Alloy Actuated Reconfigurable Wing [ A ]. Smart Structures and Materials 2002 : Smart Structures and Integrated Systems [ C ]. Proceedings of SPIE, 2002: 267-280.
  • 5Clarke R, Allen M J, Dibley R P. Flight Test of the F/A- 18 Active Aeroelastic Wing Airplane [ A ]. AIAA Atmospheric Flight Mechanics Conference and Exhibit [ C ]. San Francisco, CA, 2005 : 1-31.
  • 6Shipley Jr N, Gopalarathnam A. Static Aeroelasticity Considerations in Aerodynamic Adaptation of Wings for Low Drag [ A ]. 44th AIAA Aerospace Sciences Meeting and Exhibit [ C ]. Reno, Nevada,2006 : 1-14.
  • 7Eller D, Heinze S. An Approach to Induced Drag Reduction with Experimental Evaluation [ J ]. AIAA Journal of Aircraft ,2005,42 (6) : 1478-1485.
  • 8Weisshaar T, Duke K. Induced Drag Reduction Using Aeroelastic Tailoring with Adaptive Control Surfaces [ J]. Journal of Aircraft ,2006,43 ( 1 ) : 157-164.
  • 9Gilbert W. Mission Adaptive Wing System for Tactical Aircraft[ J ]. Journal of Aircraft, 1981,18 (7) :597-602.
  • 10Lu K, Kota S. Design of Compliant Mechanisms for Morphing Structural Shapes [ J]. Journal of Intelligent Material Systems and Structures,2003,14(6) :379-391.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部