期刊文献+

多尺度局部特征和Transformer全局学习融合的发动机剩余寿命预测

Prediction of Aeroengine Remaining Life by Combining Multi-scale Local Features and Transformer Global Learning
下载PDF
导出
摘要 飞机发动机剩余寿命(Remaining useful life,RUL)的准确预测对确保其安全性和可靠性至关重要.在基于多传感器检测数据预测时,需解决局部特征提取问题以全面捕捉设备在不同时间尺度下的退化趋势,并需解决时间序列中各元素之间长期依赖性的全局学习问题.因此,提出了结合多尺度局部特征增强单元(Multi-sacle local feature enhancement unit,MSLFU_BLOCK)和Transformer编码器的预测模型,称之为MS_Transformer.MSLFU_BLOCK利用堆叠的因果卷积逐层从时间序列数据中提取多尺度局部信息,同时避免了传统卷积计算中固有的未来数据泄漏问题.随后,Transformer编码器通过其自注意机制进一步捕获时间序列数据中的短期和长期依赖关系.通过将多尺度局部特征增强单元与Transformer编码器相结合,提出的MS_Transformer全面捕捉了时间序列数据中的局部和全局模式.在广泛使用的CMAPSS基准数据集上进行的消融和预测实验验证了模型的合理性和有效性.与13个先进预测模型的比较分析表明,MS_Transformer模型在操作条件更复杂的FD002和FD004数据集上的RMSE和Score指标优于其他模型,同时在四个数据集上的平均性能最优.该研究为发动机剩余寿命预测提供了更为可靠的解决方案. Accurate prediction of the remaining useful life(RUL)of aeroengine is crucial for ensuring their safety and reliability.In the process of predicting RUL based on multi-sensor detection data,it is necessary to address the issue of local feature extraction to comprehensively capture the degradation trends of equipment at different time scales,as well as the global learning problem of long-term dependencies among elements in the time series.Therefore,we propose a predictive model named MS_Transformer,which combines the multi-scale local feature enhancement unit(MSLFU_BLOCK)and a Transformer encoder.The MSLFU_BLOCK leverages stacked causal convolutional layers to progressively extract multi-scale local information from the time series data,simultaneously mitigating concerns related to future data leakage inherent in conventional convolutional computations.Subsequently,the Transformer encoder,with its self-attention mechanism,further captures short-term and long-term dependencies within the time series data.By integrating the MSLFU_BLOCK with the Transformer encoder,the proposed MS_Transformer comprehensively captures both local and global patterns within time series data.Extensive ablation and prediction experiments were performed on the widely utilized C-MAPSS benchmark dataset to validate the rationality and effectiveness of the proposed model.Comparative analyses with thirteen advanced prediction models demonstrate that the MS_Transformer model outperforms others,particularly on the more complex FD002 and FD004 datasets,based on RMSE and Score metrics.The average performance across all four datasets indicates the superiority of the proposed approach.The research provides a more reliable solution for predicting the RUL of engines.
作者 陈俊英 席月芸 李朝阳 CHEN Jun-Ying;XI Yue-Yun;LI Zhao-Yang(College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1818-1830,共13页 Acta Automatica Sinica
基金 国家自然科学基金(62103316) 陕西省自然科学基金(2023-JCYB-562)资助。
关键词 剩余寿命预测 航空发动机 TRANSFORMER 多尺度特征 局部特征 Remaining life prediction aeroengine Transformer multi-scale features local features
  • 相关文献

参考文献1

二级参考文献8

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部