期刊文献+

A novel dynamic step size LMS optimization scheme for interference reducing in FBMC-QAM

下载PDF
导出
摘要 Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
作者 DONG Qiyang MA Tianming JIANG Xiaoxiao MA Honglei 董琪阳;MA Tianming;JIANG Xiaoxiao;MA Honglei(School of Electrical and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,P.R.China)
出处 《High Technology Letters》 EI CAS 2024年第3期290-296,共7页 高技术通讯(英文版)
基金 the National Natural Science Foundation of China(No.61601296,61701295) the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500) the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
  • 相关文献

参考文献2

二级参考文献78

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献722

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部