期刊文献+

长距离负扬程加压泵站调水工程水力控制方式探讨

Discussion on Hydraulic Control Mode of Long-distance Negative-lift Pump Station
下载PDF
导出
摘要 事故掉电引发的停泵水锤是泵站调水工程安全运行最主要的威胁之一,而对于下游水位低于上游水位的长距离负扬程加压泵站调水工程而言,事故停泵易造成管道拉空,负水锤防护难度较大,因此,针对其停泵工况的水力控制研究十分重要。以某长距离负扬程泵站调水工程为例,模拟计算了事故停泵、阀门拒动这一控制性工况下的水力过渡过程,并对比分析了空气罐、空气阀与空气阀联合空气阀调压室3种水力控制方案的水锤防护效果。结果表明:对于长距离负扬程加压泵站调水系统而言,当采用空气罐的水力控制方式时,所需的空气罐体积较大,投资高昂;当单纯采用空气阀的水力控制方式时,难以有效解决管道局部高点处负压较大的问题,仍可能诱发弥合性水锤;当将部分空气阀附加一根短管组合成空气阀调压室后,能够有效控制管内负压。空气阀与空气阀调压室联合防护是一种十分经济且有效的水锤防护方案,可为这类负扬程加压调水工程的水力控制方式选取提供参考。 The pump-stopping water hammer caused by accidental power failure is one of the main threats to the safe operation of pump station project.For long-distance negative-lift pump station(LDNLPS)with downstream water level lower than upstream water level,accidental pump stop can easily cause pipeline emptying,which makes it challenging to protect against negative water hammer.It is crucial to investigate hydraulic control measures for pump stop conditions.Taking a LDNLPS as a case study,we simulated the hydraulic transients under accidental pump stop and valve rejection conditions.We compared and analyzed the water hammer protection effects of three hydraulic control schemes:air tank,air valve,and combination of air valve with air-valve surge chamber.The results indicate that using air tank requires large volume and high investment costs;air valve alone struggles to address the large negative pressure at local high points of the pipeline and may still induce bridging water hammer.Conversely,combining some air valves with short pipes to form air valve surge chamber effectively controls the negative pressure in the pipeline.In conclusion,the combination of air valve with air-valve surge chamber is economical and effective in protecting against water hammer,hence offering a viable solution for hydraulic control in similar LDNLPS projects.
作者 曾敏 谢杰 黄伟 祖子豪 廖晨希 程佳长 ZENG Min;XIE Jie;HUANG Wei;ZU Zi-hao;LIAO Chen-xi;CHENG Jia-chang(Department of Hydraulic Engineering,Jiangxi Water Resources Institute,Nanchang 330013,China;School of Infrastructure Engineering,Nanchang University,Nanchang 330031,China)
出处 《长江科学院院报》 CSCD 北大核心 2024年第9期93-97,113,共6页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金项目(51909115) 江西省水利厅科技课题(202123YBKT04) 江西省教育厅科技项目(GJJ215903)。
关键词 停泵水锤 空气阀 空气阀调压室 空气罐 水力控制 pump-stopping water hammer air valve air-valve surge chamber air tank hydraulic control
  • 相关文献

参考文献4

二级参考文献14

  • 1张之钰,苏海滨.压力管道输水进、排气系统的设计方法[J].中国给水排水,2005,21(4):54-57. 被引量:9
  • 2张春娟,郑新让,张迪.冯家山水库引水工程爆管事故分析[J].中国农村水利水电,2005(5):81-82. 被引量:8
  • 3马乐宁,刘文君,徐洪福.供水管道爆漏事故影响因素实例分析[J].给水排水,2006,32(9):86-89. 被引量:17
  • 4胡建永.长距离输水工程水锤防护与运行调度研究[D].南京:河海大学,2008.
  • 5GB50013-2006.室外给水设计规范[S].
  • 6Wylie E B, Streetr V L, Suo Lisheng. Fluid transient in systems [ M ] . PRENTICE HALL, Englewood Cliffs, NJ 07632, 1993, 130-132.
  • 7熊水应,关兴旺,金锥.多处水柱分离与断流弥合水锤综合防护问题及设计实例[Z].北京:中国环境工程技术中心网,2006.
  • 8Wylie E B, Streeter V L. Fluid transients [ M ]. McGraw-Hill International Book Company, 1978.
  • 9杨开林,等.吉林省中部城市供水引嫩入白城市供水工程水力过渡过程研究[R].北京:中国水利水电科学研究院,2008.
  • 10Wylie E B,Streeter V L,Suo Lisheng.Fluid Transient in Systems.Prentice Hall,Englewood Cliffs.NJ07632.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部