期刊文献+

面向港口环境精细感知的无人船多传感器融合SLAM系统 被引量:1

Multi-Sensor Fusion SLAM System of an Unmanned Surface Vehicle for Fine Sensing in Port Environment
下载PDF
导出
摘要 针对港口环境高精度感知需求,综合考虑影响同时定位与建图(SLAM)精度的港口环境因素,提出基于多传感器融合的激光SLAM环境感知方案。通过分析多种传感器对港口SLAM环境感知的影响,引入惯性测量传感器弥补激光SLAM输出频率低和剧烈运动位姿估计不准确等缺陷,采用卫星定位系统信息进行高程数据约束,处理船舶运动特性导致的垂荡累计漂移。从应用需求出发,对传感器进行选型和布置优化,搭建基于无人船的港口环境多传感器融合SLAM系统。结果表明,提出的港口环境高精度点云地图获取方案能在典型港口场景下准确实时建图,为水面精细SLAM提供技术支持。 In response to the demands for high-precision port environment perception,a Lidar simultaneous localization and mapping(SLAM)environment perception scheme based on multi-sensor fusion is proposed by comprehensively considering the port environment factors that affect the accuracy of SLAM.By analyzing the impact of various sensors on the environment perception of port SLAM,inertial measurement sensors are introduced to compensate for the shortcomings of low output frequency of Lidar SLAM and inaccurate pose estimation under intense motion.Introduce elevation data constraints based on satellite positioning system information to handle accumulated heave drift caused by ship motion characteristics.Starting from application requirements,sensor selection and layout optimization are carried out to build a multi-sensor fusion SLAM system for port environment based on unmanned surface vehicle.The results indicate that the proposed high-precision point cloud map acquisition scheme for port environment can accurately and real-time construct maps in typical port scenarios,providing technical support for fine SLAM of water surface.
作者 王宁 张雪峰 李洁龙 张富宇 魏一 WANG Ning;ZHANG Xuefeng;LI Jielong;ZHANG Fuyu;WEI Yi(Dalian Maritime University,Marine Engineering College,Dalian 116026,Liaoning,China;Dalian Maritime University,Marine Electrical Engineering College,Dalian 116026,Liaoning,China)
出处 《船舶工程》 CSCD 北大核心 2024年第7期81-89,共9页 Ship Engineering
基金 国家自然科学基金(U23A20680,52271306) 国家高层次人才支持计划(SQ2022QB00329) 国防基础科研计划一般项目(JCKY2022410C013) 辽宁省“兴辽英才计划”领军人才项目(XLYC2202005) 大连市科技创新基金重大基础研究(2023JJ11CG009) 中央高校基本科研业务费专项资金(3132023501)。
关键词 港口环境感知 同时定位与建图 多传感器融合 激光雷达 无人船 port environment perception simultaneous localization and mapping(SLAM) multi-sensor fusion Lidar unmanned surface vehicle(USV)
  • 相关文献

参考文献6

二级参考文献63

  • 1BAIRD W H. An introduction to inertial navigation [J]. American Journal of Physics, 2009,77 (844).
  • 2KONOLIGE K, AGRAWAL M, SOL J. Large-Scale Visual Odometry for Rough TerrainRobotics Research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer,2011 : 201-212.
  • 3BONIN-FONT F, ORTIZ A, OLIVER G. Visual navigation for mobile robots : A survey [J]. Journal of Intelligent & Robotic Systems ,2008,53 ( 3 ) : 263-296.
  • 4STRASDAT H, MONTIEL J M M, DAVISON A J. Visual SLAM: Why filter [ J ]. Image and Vision Computing, 2012,30(2) : 65-77.
  • 5NEWMAN P, CHANDRAN-RAMESH M, COLE D, et al. Describing, navigating and recognising urban spaces-building an end-to-end SLAM system robotics research [M]. KANEKO M, NAKAMURA Y. Heidelberg, Berlin, Springer, 2011: 237-253.
  • 6WILLIAMS B,CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM [ J ]. Robotics and Autonomous Systems, 2009, 57 ( 12 ) : 1188-1197.
  • 7KUMAR S, PRAKASH J, KANAGASABAPATHY P. A critical evaluation and experimental verification of extended kalman filter, unscented kalman filter and Neural State Filter for state estimation of three phase induction motor [ J ]. Applied Soft Computing, 2011, 11 ( 3 ) : 3199 -3208.
  • 8RYU J B, LEE C G, PARK H H. Formula for Harris corner detector [ J ]. Electronics Letters, 2011, 47 ( 3 ) : 180-181.
  • 9KELLY J, SARIPALLI S, SUKHATME G. Combined visual and inertial navigation for an unmanned aerial vehicle field and service robotics [M]. LAUGIER C, SIEGWART R. Heidelberg, Berlin, Springer, 2008 : 255-264.
  • 10LUKASHEVICH P, ZALESKY B, ABLAMEYKO S. Medical image registration based on SURF detector [ J ]. Pattern Recognition and Image Analysis, 2011,21 ( 3 ) : 519-521.

共引文献218

同被引文献37

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部