期刊文献+

基于残差神经网络的马里亚纳海沟地形反演

Inversion of mariana trench topography using residual deep neural networks
下载PDF
导出
摘要 为提高利用重力异常数据反演马里亚纳海沟地形的精度,基于残差深度神经网络(residual deep neural network,RDNN)方法和重力异常等数据反演了马里亚纳海沟的1′×1′海底地形,通过实测检核点水深对RDNN模型的精度进行评估,并和重力地质法(gravity-geology method,GGM)模型结果进行对比。结果表明RDNN较GGM对马里亚纳海沟地形反演更为精细,实测水深检核表明RDNN模型均方根误差为128.98 m,优于GGM模型的150.14 m,且RDNN与船测检核水深也有更好一致性,RDNN深度学习模型为利用重力异常数据反演高精度海底地形提供了参考和依据。 To improve the accuracy of using gravity data to invert mariana trench topography,this study presents a methodology for bathymetric inversion of the Mariana Trench utilizing Residual Deep Neural Network(RDNN)and gravity anomaly data.The accuracy of the RDNN model is evaluated by the in-situ check point depths,and compared with the Gravity-Geology Method(GGM)model.The results demonstrate that the RDNN provides a more detailed inversion of the Mariana Trench′s bathymetry.The root mean square error(RMSE)of the RDNN model is 128.98 m,better than 150.14 m of GGM model,suggesting a better consistency with ship-measured check point depths.The RDNN deep learning model proposed in this study provides a reference for high-precision bathymetric inversion using gravity anomaly data.
作者 王永康 张薇 黄令勇 刘鑫仓 杨磊 WANG Yongkang;ZHANG Wei;HUANG Lingyong;LIU Xincang;YANG Lei(National Marine Environmental Monitoring Center,Dalian 116023,China;State Key Laboratory of Geo-information Engineering,Xi’an 710054,China;First Institute of Oceanography,MNR,Qingdao 266510,China)
出处 《海洋测绘》 CSCD 北大核心 2024年第4期12-15,20,共5页 Hydrographic Surveying and Charting
基金 国家自然科学基金(41806214)。
关键词 重力异常 残差深度神经网络 马里亚纳海沟 短波重力异常 地形特征反演 gravity anomaly residual deep neural networks mariana trench short-wave gravitational anomaly inversion of topographic features
  • 相关文献

参考文献5

二级参考文献29

  • 1田丽艳,赵广涛,陈佐林,王元领,吴世迎.马里亚纳海槽热液活动区玄武岩的岩石地球化学特征[J].青岛海洋大学学报(自然科学版),2003,33(3):405-412. 被引量:12
  • 2曹志敏,安伟,周美夫,郑建斌,漆亮.马里亚纳海槽扩张轴(中心)玄武岩铂族元素特征[J].海洋学报,2006,28(5):69-75. 被引量:4
  • 3徐世浙.迭代法与FFT法位场向下延拓效果的比较[J].地球物理学报,2007,50(1):285-289. 被引量:77
  • 4Carruthers JN. Lawford AL. The deepest oceanic sounding[ J]. Nature, 1952,169:601-603.
  • 5Fujioka K, Okino K, Kanamatsu T. Morphology and origin of the Challenger Deep in the southern Mariana Trench [ J]. Geophys,Res Lett,2002,29 : 1372.
  • 6Gvirtzman Z, Stern RJ. Bathymetry of Mariana trench- arc system and formation of the Challenger Deep as a consequence of weak plate coupling [ J ]. Tectonics, 2004,23 : TC2011.
  • 7Masao Nakanishi, Jun Hashimoto. A precise bathymetric map of the world' s deepest seafloor, Challenger Deep in the Mariana Trench [ J ]. Mar Geophys Res, 2010, DOI: 10. 1007/s11001- 011-9134- 0.
  • 8Kongsberg Maritime AS. EM122 Multibeam echosounder product description[ Z]. 2006,06 : 1-43.
  • 9Fonseca L, L A Meryer, D Orange, et al. The High frequency backscattering angular response of gassy sediments:Model/data comparisons from the Eel River Margin, California[ J ]. Journal of the Acoustical society of America, 2002,111 ( 6 ) : 2621-2631.
  • 10L3 communications SeaBeam Instruments, Multibeam Sonar theory of operation[ Z ]. 1999,2101-8289 RevisionB : 1-106.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部