摘要
矩阵的秩是线性代数中应用十分广泛的重要概念,同时它的抽象性也使其成为线性代数中的难点之一.从行列式、行阶梯形矩阵、线性方程组、向量组等不同视角对矩阵的秩进行探究和分析并通过调整气象观测站问题这一实际案例进行说明,不仅对教师关于此概念的教学具有积极的指导意义,而且还可降低学生理解这一抽象概念的难度,促进学生发散思维的培养和创新能力的提升.
nature often makes it challenging to grasp.This paper explores the rank of a matrix from various perspectives,including determinants,echelon forms,systems of linear equations,and vector spaces.By applying these concepts to practical examples,such as the adjustment of meteorological observation stations,this study provides valuable insights for educators.These approaches not only make the concept more accessible for students but also foster divergent thinking and enhance innovative abilities.
作者
冯媛
刘新红
FENG Yuan;LIU Xinhong(Zhiyuan College,Beijing Institute of Petrochemical Technology,Beijing 102617,China)
出处
《高等数学研究》
2024年第5期50-53,共4页
Studies in College Mathematics
基金
中国高等教育学会2023年高等教育科学研究规化课题(23SX0411).
关键词
矩阵的秩
多视角
创新能力
rank of matrix
divergent thinking
innovative capability