期刊文献+

多策略蛇优化算法在混合储能配置中的应用研究

Application research of multi-strategy snake optimization algorithm in hybrid energy storage configuration
下载PDF
导出
摘要 考虑到蓄电池和超级电容组成的混合储能系统(hybrid energy storage system,HESS)可有效缓解风电功率并网对电网造成的冲击,为提高HESS的可靠性,针对变分模态分解(variational mode decomposition,VMD)中的参数值K和α选择过程困难的问题,提出多策略蛇优化算法(multi-strategy optimization algorithm,MISOA)对其参数进行寻优,从而精确实现HESS功率的一次分配。通过基准测试函数的寻优实验表明所提出的MISOA收敛速度和寻优能力均有明显提升。将蓄电池-超级电容混合储能系统作为研究对象,以我国西北地区某装机容量为22 MW的风电场数据作为研究依据,发现MISOA-VMD优化得到的参数组合[K,α]运用到VMD中时,相较于SOA收敛速度提升70%,收敛精度也有所提升,相较于经验模态分解(empirical mode decomposition,EMD)减少了模态混叠现象,验证了策略的可行性。 A hybrid energy storage system(HESS)consisting of batteries and supercapacitors effectively mitigates the impact of wind power integration on the grid.To address the difficulty in selecting parameter values K andαin Variational Mode Decomposition(VMD),this paper proposes Multi-Strategy Optimization Algorithm(MISOA)to optimize the parameters,so as to accurately achieve a single allocation of HESS power.HESS consists of two or more energy storage technologies of different structures with matching characteristics.By combining the power outputs of different energy storage technologies,it is possible to achieve complementary advantages of different energy storage technologies,effectively expand the advantage range provided by a single energy storage technology,enhance the working performance of the energy storage system,and reduce the research costs for fundamental development of the storage mechanisms.This paper mainly studies the power allocation strategy of the HESS,introduces the basic principles of the variational mode decomposition and points out a snake optimization algorithm(SOA)to optimize the parameters of VMD on the basis of objective function of minimizing the entropy envelope.But the traditional SOA has a slow convergence rate and is prone to falling into a local optimal solution.Three optimization methods are employed to ensure the algorithm maintains good global search capabilities during the iterative process and its convergence ability is improved.First,reverse difference after initialization population variation is used to increase the population diversity.Then,through the position update formula of the fusion subtraction average optimization algorithm(SABOA),the global search capability of the algorithm is improved.The final stage is putting up the strategy of survival of the fittest to avoid prematurity.Based on SOA optimization,we propose the multi-strategy optimization algorithm(MISOA)to optimize the parameters and obtain the optimal parameter combination.HESS target power after the decomposition of each modal component Hilbert transform,regarding the modal mixing degree of the least mixed modal point as the boundary point of the high and low frequency power,thus completing the primary allocation of target power of the HESS.The battery-supercapacitor hybrid energy storage system and the data of a 22 MW wind farm in northwest China are taken as the research object and basis.Our results show compared with SOA,MISOA-VMD enhances the convergence speed by 70%and improves the convergence accuracy;compared with Empirical Mode Decomposition(EMD),the mode aliasing phenomenon is reduced,thus verifying the effectiveness of our strategy.
作者 雷国平 邬佳程 晏娟 安静 吴天骜 高乐 蒋洲 LEI Guoping;WU Jiacheng;YAN Juan;AN Jing;WU Tianao;GAO Le;JIANG Zhou(School of Electronic&Information Engineering,Chongqing Three Gorges University,Chongqing 404100,China;Chongqing Three Gorges Hydropower Co.,Ltd.,Chongqing 404100,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第9期174-182,共9页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市自然科学基金创新发展联合基金(CSTB2023NSCQ-LMX0027) 重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1320,cstc2021jcyj-msxmX0301,2022NSCQ-MSX4086) 重庆市教委科学技术研究项目(KJZD-K202101202) 重庆市万州区科研项目(wzstc20220301) 重庆市高校创新研究群体项目(CXQT-20024)。
关键词 MISOA 变分模态分解 混合储能系统 参数优化 功率分配 MISOA variational mode decomposition hybrid energy storage system parameter optimization power distribution
  • 相关文献

参考文献14

二级参考文献165

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部