期刊文献+

GLOBAL UNIQUE SOLUTIONS FOR THE INCOMPRESSIBLE MHD EQUATIONS WITH VARIABLE DENSITY AND ELECTRICAL CONDUCTIVITY

下载PDF
导出
摘要 We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
作者 Xueli KE 可雪丽(School of Mathematics and Computational Science,Xiangtan University,Xiangtan,411105,China;School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo,454000,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1747-1765,共19页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(12371211,12126359) the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
  • 相关文献

参考文献1

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部