期刊文献+

A COMPACT EMBEDDING RESULT FOR NONLOCAL SOBOLEV SPACES AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR NONLOCAL SCHRÖDINGER EQUATIONS

下载PDF
导出
摘要 For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.
作者 Xu ZHANG Hao ZHAI Fukun ZHAO 张徐;翟昊;赵富坤(Department of Mathematics,Wuhan University of Technology,Wuhan,430070,China;Department of Mathematics,Yunnan Normal University,Kunming,650500,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1853-1876,共24页 数学物理学报(B辑英文版)
基金 supported by the NSFC(12261107) Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007).
  • 相关文献

参考文献1

二级参考文献28

  • 1Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schr6dinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7:117-144.
  • 2Ambrosetti A, Malchiodi A. Perturbation Methods and Semilinear Elliptic Problems on N. Vol.240. Birkh/iuser: Progr Math Ser, 2006.
  • 3Ambrosetti A, Malchiodi A, Ruiz D. Bound states of nonlinear SchrSdinger equations with potentials vanishing at infinity. J Anal Math, 2006, 98:317-348.
  • 4Ambrosetti A, Ruiz D. Radial solutions concentrating on spheres of nonlinear SchrSdinger equations with vanishing potentials. Proc Roy Soc Edinburgh Sect A, 2006, 136:889-907.
  • 5Ambrosetti A, Wang Z. Nonlinear SchrSdinger equations with vanishing and decaying potentials. Diff Integral Equat, 2005, 18:1321 -1332.
  • 6Ba N, Deng Y, Peng S. Multi-peak bound states for SchrSdinger equations with compactly supported or unbounded potentials. Ann Inst H Poincar@ Anal Non Linaire, 2010, 27:1205-1226.
  • 7Bartsch T, Liu Z, Weth T. Sign changing solutions of superlinear SchrSdinger equations. Comm Partial Differential Equations, 2004, 29:25-42.
  • 8Bartsch T, Wang Z. Sign changing solitions of nonlinear Schr6dinger equations. Topol Methods Nonlinear Anal, 1999, 13:191-198.
  • 9Byeon J, Wang Z. Standing wave for nonlinear Schrbdinger equations with singular potentials. Ann Inst H Poincar6 Anal Non Lin@aire, 2009, 26:943-958.
  • 10Byeon J, Wang Z. Spherical semiclassical states of a critical frequency for Schrbdingcr equations with decaying potentials. J Eur Math Soc, 2006, 8:217-228.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部