期刊文献+

A DERIVATIVE-HILBERT OPERATOR ACTING FROM LOGARITHMIC BLOCH SPACES TO BERGMAN SPACES

下载PDF
导出
摘要 Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.
作者 Shanli YE Yun XU 叶善力;徐芸(School of Science,Zhejiang University of Science and Technology,Hangzhou,310023,China)
机构地区 School of Science
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1916-1930,共15页 数学物理学报(B辑英文版)
基金 supported by Zhejiang Provincial Natural Science Foundation of China(LY23A010003).
  • 相关文献

参考文献3

二级参考文献3

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部