期刊文献+

ESTIMATION OF AVERAGE DIFFERENTIAL ENTROPY FOR A STATIONARY ERGODIC SPACE-TIME RANDOM FIELD ON A BOUNDED AREA

下载PDF
导出
摘要 In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
作者 Zhanjie SONG Jiaxing ZHANG 宋占杰;张家兴(Georgia Tech Shenzhen Institute,Tianjin University,Shenzhen,518055,China;Tianjin Key Laboratory of Brain-Inspired Intelligence Technology,Tianjin,300072,China;School of Mathematics,Tianjin University,Tianjin,300354,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1984-1996,共13页 数学物理学报(B辑英文版)
基金 supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
  • 相关文献

参考文献5

二级参考文献40

  • 1XIONG Shifeng LI Guoying.Testing for the maximum cell probabilities in multinomial distributions[J].Science China Mathematics,2005,48(7):972-985. 被引量:3
  • 2XIONG ShiFeng,LI GuoYing.Inference for ordered parameters in multinomial distributions[J].Science China Mathematics,2009,52(3):526-538. 被引量:1
  • 3Hasegawa H. On the construction of a time-reversed Markoff process. Prog Theor Phys, 1976, 55: 90-105.
  • 4Hasegawa H. Variational principle for non-equilibrium states and the Onsager-Machlup formula. ibid, 1976, 56:44-60.
  • 5Hasegawa H. Thermodynamic properties of non-equilibrium states subject to Fokker-Planck equations. ibid, 1977, 57:1523-1537.
  • 6Hasegawa H. Variational approach in studies with Fokker-Planck equations. ibid, 1977, 58:128-146.
  • 7Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems. New York: Academic Press, 1977.
  • 8Schnakenberg J. Network theory of microscopic and macroscopic behaviour of Master equation systems. Rev Modern Phys, 1976, 48(4): 571-585.
  • 9Qian M P, Qian M. Circulation for recurrent Markov chains. Z Wahrsch Verw Gebiete, 1982, 59:203-210.
  • 10Qian M P, Qian M. The entropy production and reversibility of Markov processes. In: Probability Theory and Applications. Volume 1. Utrecht: VNU Science Press, 1987. 307-316.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部