期刊文献+

THE SCHUR TEST OF COMPACT OPERATORS

下载PDF
导出
摘要 Infinite matrix theory is an important branch of function analysis.Every linear operator on a complex separable infinite dimensional Hilbert space corresponds to an infinite matrix with respect a orthonormal base of the space,but not every infinite matrix corresponds to an operator.The classical Schur test provides an elegant and useful criterion for the boundedness of linear operators,which is considered a respectable mathematical accomplishment.In this paper,we prove the compact version of the Schur test.Moreover,we provide the Schur test for the Schatten class S_(2).It is worth noting that our main results can be applicable to the general matrix without limitation on non-negative numbers.We finally provide the Schur test for compact operators from l_(p) into l_(q).
作者 Qijian KANG Maofa WANG 康齐健;王茂发(School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang,524048,China;School of Mathematics and Statistics,Wuhan University,Wuhan,430072,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期2041-2050,共10页 数学物理学报(B辑英文版)
基金 supported by NSFC(12171373).
  • 相关文献

参考文献3

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部