期刊文献+

一类d-维齐次Moran集的分形维数

Fractal dimensions of a class of d-dimensional homogeneous Moran Sets
下载PDF
导出
摘要 该文研究了一类特殊的d-维齐次Moran集:{m_(k)^(d)}型齐次Moran集,利用质量分布原理、乘积集的分形维数不等式以及关于一维齐次Moran集上盒维数的重要引理,结合{m_(k)^(d)}型齐次Moran集的自身结构,得到了{m_(k)^(d)}型齐次Moran集在特定条件下的Hausdorff维数与上盒维数的表达式. {m_(k)^(d)}type homogeneous Moran sets,which are a special class of d-dimensional homogeneous Moran sets are studied in this paper.By using the mass distribution principle,the inequality of the fractal dimensions for the product set and the important lemma of the upper box dimension for the one dimensional homogeneous Moran sets are obtained.Meanwhile,combining the structures of{m_(k)^(d)}type homogeneous Moran sets,the representations of Hausdorff dimension and upper box dimension for{m_(k)^(d)}type homogeneous Moran sets are obtained under some conditions.
作者 蔡畅 梁爽 李彦哲 CAI Chang;LIANG Shuang;LI Yanzhe(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期511-518,共8页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(12461015) 广西自然科学基金项目(2020GXNSFBA297040).
关键词 齐次MORAN集 {m_(k)^(d)}型齐次Moran集 HAUSDORFF维数 上盒维数 homogeneous Moran sets {m_(k)^(d)}type homogeneous Moran sets Hausdorff dimension upper box dimension
  • 相关文献

参考文献5

二级参考文献24

  • 1Dejun Feng,Zhiying Wen,Jun Wu.Some dimensional results for homogeneous Moran sets[J]. Science in China Series A: Mathematics . 1997 (5)
  • 2Yakov Pesin,Howard Weiss.On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture[J]. Communications in Mathematical Physics . 1996 (1)
  • 3Moran,P.A.Additive functions of intervals and Hausdorff measure,Proc.Camb. Phil.Soc . 1946
  • 4Hua Su,Li Wen-Xia.Packing dimension of generalized Moran sets,Progr. Natur.Sci . 1996
  • 5Marion,J.Mesures do Hausdorff d’un fractals similitude interne,Ann.Sci.Math. Quebec . 1986
  • 6Feng De-Jun,Rao Hui,Wu Jun.The net measure properties for symmetric Cantor sets and their applications,Progr. Natur.Sci . 1997
  • 7Feng Dejun.Some problems in fractal geometry,Ph. . 1997
  • 8Hutchinson,J.E.Fractals and self-similarity,Indiana Univ. Mathematica Japonica . 1981
  • 9McMullen,C.The Hausdorff dimension of general Siepinski carpets,Nogaya Math. J . 1984
  • 10Dejun Feng,Zhiying Wen,Jun Wu.Some dimensional results for homogeneous Moran sets[J].Science in China Series A: Mathematics.1997(5)

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部