摘要
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
针对智能驾驶系统传感器配置冗余问题,构建了考虑成本、覆盖能力与感知性能三方面的多目标优化模型。然后,结合一组具体参数,利用NSGA-II算法对所建立的多目标优化模型进行求解,并在考虑了经验约束后提取出一个包含24种典型配置方案的Pareto前沿。最后,利用所提出的主客观结合的决策偏好方法,从成本偏好和性能偏好两方面对各类配置方案进行决策得分计算与排序。研究结果表明,所建立的多目标优化模型可以从整车最优层面对各类配置方案进行筛选和优化,从而获得不同偏好倾向下满足整车最优的配置方案决策结果。
出处
《汽车技术》
CSCD
北大核心
2024年第10期28-37,共10页
Automobile Technology
基金
国家重点研发计划项目(2023YFB2504500)。