期刊文献+

Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:2

下载PDF
导出
摘要 The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页 岩石力学与岩土工程学报(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062) the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
  • 相关文献

参考文献13

二级参考文献91

共引文献58

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部