期刊文献+

基于改进YOLOv5x算法的海上风机叶片缺陷检测系统

Offshore Turbine Blade Defects Based on an Improved YOLOv5x Algorithm
下载PDF
导出
摘要 随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once version 5x)算法的海上风机叶片缺陷机器视觉检测系统。该方法引入了卷积块注意力机制(Convolutional Block Attention Module,CBAM),以增强神经网络对输入特征的感知能力,使用智慧交并比(Wise Intersection over Union,WIoU)作为损失函数,减少人工标注数据的误差,提高目标检测的准确性。基于海上风机叶片缺陷数据对模型进行训练,将训练好的模型封装成海上风机叶片机器视觉识别系统。试验结果显示,改进后的YOLOv5x算法,相比于原有的YOLOv5x,平均精度均值(mean Average Precision,mAP)提高了4.71%,准确率(Precision)提高了7.48%,且能满足实时性需求。 With the booming development of offshore wind power,operation and maintenance(O&M)work has become an increasingly prominent issue.Turbine blades爷operation and maintenance work is crucial to the unit as a large-scale key wind power component.In order to address the problems of high risk,poor efficiency,and low accuracy in offshore wind turbine blade manual operation and maintenance inspection.This paper proposes a machine vision inspection system for offshore wind turbine blade defects,based on the enhanced YOLOv5x algorithm.In this system,a CBAM attention mechanism is introduced to enhance the neural network爷s ability to perceive input features.Additionally,the Weighted Intersection over Union(WIoU)is employed as the loss function to alleviate errors in manually annotated data and improve target detection accuracy.Based data on offshore wind turbine blade flaws are used to train the model.An offshore wind turbine blade machine vision identification system incorporates the learned model.The experimental findings demonstrate that the YOLOv5x algorithm,introducing the CBAM attention mechanism compared to the original one,improves the mAP value by 4.71%,the Precision value by 7.48%and satisfies the real-time criteria.
作者 余健威 邓超 张颖 陈晓敏 YU Jianwei;DENG Chao;ZHANG Ying;CHENG Xiaoming(Faculty of Computer Science and Engineering,Yangjiang Campus of Guangdong Ocean University,Yangjiang 529500,China;Yangjiang Institute of South China University of Technology,Yangjiang 529500,China;Faculty of Materials Science and Engineering,Yangjiang Campus of Guangdong Ocean University,Yangjiang 529500,China)
出处 《海洋技术学报》 2024年第5期102-112,共11页 Journal of Ocean Technology
基金 广东省科技专项基金资助项目(SDZX2022009) 广东省科技专项资金资助项目(SDZX2021008) 2023年度广东省本科高校教学质量与教学改革工程建设项目(310210042202) 国家级大学生创新创业训练计划资助项目(202310566039)。
关键词 海上风机叶片 缺陷检测 CBAM WIoU offshore wind turbine blades defect detection CBAM WIoU
  • 相关文献

参考文献11

二级参考文献78

  • 1黄延琦,张俊臣.海上风电钢管桩防腐系统远程监测技术[J].船舶工程,2020,42(S01):571-574. 被引量:7
  • 2Becker E.,Bushse W.,Gunnewig D.et al.Digital Rights Management.New York:M & T Books,2002
  • 3Bender W.,Gruhl D.,Morimoto N.et al.Technique for data hiding.IBM Systems Journal,1996,35(3/4):313~335
  • 4Cox I.J.,Kilian J.,Leighton F.T.et al.Secure spread spectrum watermarking for multimedia.IEEE Transactions on Image Processing,1997,6(12):1673~1687
  • 5Mobasseri B.G..Exploring CDMA for watermarking of digital video.In:Proceedings of the SPIE-Electronic Imaging,San Jose,CA,USA,1999,3657:96~102
  • 6Steven N.,Harold S..Multimedia authenticity with ICA watermarks.In:Proceedings of the SPIE-The International Society for Optical Engineering,2000,4056:175~184
  • 7Pereira S.,Pun T..Robust template matching for affine resistant image watermarks.IEEE Transactions on Image Processing,2000,9(6):1123~1129
  • 8Xia Xiang-Gen,Boncelet C.G.,Arce G.R..A multiresolution watermark for digital images.In:Proceedings of the International Conference on Image Processing,Santa Barbara,CA,USA,1997,3:548~551
  • 9Zhao Yao,Lagendijk R.L..Video watermarking scheme resistant to geometric attacks.In:Proceedings of the International Conference on Image Processing,Rochester,NY,USA,2002,2:145~148
  • 10Lu Chunshien,Huang Shihkun,Sze Chwenjye et al.Cocktail watermarking for digital image protection.IEEE Transactions on Multimedia,2000,2(4):209~224

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部