期刊文献+

Machine learning applications on lunar meteorite minerals:From classification to mechanical properties prediction 被引量:1

下载PDF
导出
摘要 Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.
出处 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1283-1292,共10页 矿业科学技术学报(英文版)
基金 EP-A and JMT-R acknowledges financial support from the project PID2021-128062NB-I00 funded by MCIN/AEI/10.13039/501100011033 The lunar samples studied here were acquired in the framework of grant PGC2018-097374-B-I00(P.I.JMT-R) This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.865657)for the project“Quantum Chemistry on Interstellar Grains”(QUANTUMGRAIN),AR acknowledges financial support from the FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación(No.PID2021-126427NB-I00) Partial financial support from the Spanish Government(No.PID2020-116844RB-C21) the Generalitat de Catalunya(No.2021-SGR-00651)is acknowledged This work was supported by the LUMIO project funded by the Agenzia Spaziale Italiana(No.2024-6-HH.0).
  • 相关文献

参考文献4

二级参考文献47

  • 1Yongquan LI,Jianzhong LIU,Yongliao ZOU,Ziyuan OUYANG,Yongchun ZHENG,Zongyu YUE.Two Lunar Mare Soil Simulants[J].Acta Geologica Sinica(English Edition),2011,85(5):1016-1021. 被引量:1
  • 2F.F.Farshad,J.D.Garber,and J.N.Lorde,Predicting temperature profiles in producing oil wells using artificial neural networks,Eng.Comput.,17(2000),p.735.
  • 3E.Razmi-Rad,B.Ghanharzadeh,S.M.Mousavi,et al.,Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks,J.Food Eng.,81 (2007),p.728.
  • 4A.Alonso-Rodriguez,Forecasting economic magnitudes with neural network models,Int.Adv.Econ.Res.,5(1999),No.4,p.496.
  • 5S.Landau and S.E.Brian,A Handbook of Statistical Analyses Using SPSS,Chapman Hall/Crc,New York,2004,p.113.
  • 6K.Smith,Neural Networks in Business:Techniques and Applications,Idea Group Publishing,Hershey,2002.
  • 7H.Demuth and M.Beale,Neural Network Toolbox for Use with MATLAB,The Mathworks Inc.,Natick,2002,p.154.
  • 8C.Aldrich,Exploratory Analysis of Metallurgical Process Data with Neural Networks and Related Methods,Elsevier,Amsterdam,2002,p.5.
  • 9Y.Hu,G.Qiu,and D.Wang,The studies of carrier flotation of ultrafine wolframite,Trans.Nonferrous Met.Soc.China,2(1994),p.44.
  • 10F.Lafuma,K.Wong,and B.Cabane,Bridging of colloidal particles through adsorbed polymers,J.Colloid Interface Sci.,143(1991),No.1,p.9.

共引文献29

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部